login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164547
a(n) = 10*a(n-1) - 17*a(n-2) for n > 1; a(0) = 1, a(1) = 11.
3
1, 11, 93, 743, 5849, 45859, 359157, 2811967, 22014001, 172336571, 1349127693, 10561555223, 82680381449, 647257375699, 5067007272357, 39666697336687, 310527849736801, 2430944642644331, 19030472980917693, 148978670884223303
OFFSET
0,2
COMMENTS
Binomial transform of A164546.
Fifth binomial transform of A164640.
FORMULA
a(n) = 10*a(n-1) - 17*a(n-2) for n > 1; a(0) = 1, a(1) = 11.
a(n) = ((2+3*sqrt(2))*(5+2*sqrt(2))^n + (2-3*sqrt(2))*(5-2*sqrt(2))^n)/4.
G.f.: (1+x)/(1 - 10*x + 17*x^2).
a(n) = (17)^((n-1)/2)*(sqrt(17)*ChebyshevU(n, 5/sqrt(17)) + ChebyshevU(n-1, 5/sqrt(17))). - G. C. Greubel, Jul 17 2021
MATHEMATICA
LinearRecurrence[{10, -17}, {1, 11}, 30] (* Harvey P. Dale, Jun 04 2012 *)
PROG
(Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-2); S:=[ ((2+3*r)*(5+2*r)^n+(2-3*r)*(5-2*r)^n)/4: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 19 2009
(Sage) [(17)^((n-1)/2)*(sqrt(17)*chebyshev_U(n, 5/sqrt(17)) + chebyshev_U(n-1, 5/sqrt(17))) for n in (0..30)] # G. C. Greubel, Jul 17 2021
CROSSREFS
Sequence in context: A081575 A016150 A115203 * A298925 A016203 A241606
KEYWORD
nonn,easy
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Aug 15 2009
EXTENSIONS
Edited and extended beyond a(5) by Klaus Brockhaus, Aug 19 2009
STATUS
approved