login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164550
a(n) = 6*a(n-1) - 3*a(n-2) for n > 1; a(0) = 1, a(1) = 7.
3
1, 7, 39, 213, 1161, 6327, 34479, 187893, 1023921, 5579847, 30407319, 165704373, 903004281, 4920912567, 26816462559, 146136037653, 796366838241, 4339792916487, 23649656984199, 128878563155733, 702322407981801
OFFSET
0,2
COMMENTS
Binomial transform of A164549.
Inverse binomial transform of A154235.
FORMULA
a(n) = ((3+2*sqrt(6))*(3+sqrt(6))^n + (3-2*sqrt(6))*(3-sqrt(6))^n)/6.
G.f.: (1+x)/(1-6*x+3*x^2).
a(n) = 3^((n-1)/2)*(sqrt(3)*ChebyshevU(n, sqrt(3)) + ChebyshevU(n-1, sqrt(3))). - G. C. Greubel, Jul 16 2021
MATHEMATICA
LinearRecurrence[{6, -3}, {1, 7}, 31] (* G. C. Greubel, Jul 16 2021 *)
PROG
(Magma) [ n le 2 select 6*n-5 else 6*Self(n-1)-3*Self(n-2): n in [1..21] ];
(Sage) [3^((n-1)/2)*(sqrt(3)*chebyshev_U(n, sqrt(3)) + chebyshev_U(n-1, sqrt(3))) for n in (0..30)] # G. C. Greubel, Jul 16 2021
CROSSREFS
Sequence in context: A246987 A322876 A092923 * A125786 A287809 A155589
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Aug 15 2009
STATUS
approved