login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 6*a(n-1) - 3*a(n-2) for n > 1; a(0) = 1, a(1) = 7.
3

%I #9 Sep 08 2022 08:45:47

%S 1,7,39,213,1161,6327,34479,187893,1023921,5579847,30407319,165704373,

%T 903004281,4920912567,26816462559,146136037653,796366838241,

%U 4339792916487,23649656984199,128878563155733,702322407981801

%N a(n) = 6*a(n-1) - 3*a(n-2) for n > 1; a(0) = 1, a(1) = 7.

%C Binomial transform of A164549.

%C Inverse binomial transform of A154235.

%H G. C. Greubel, <a href="/A164550/b164550.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (6,-3).

%F a(n) = ((3+2*sqrt(6))*(3+sqrt(6))^n + (3-2*sqrt(6))*(3-sqrt(6))^n)/6.

%F G.f.: (1+x)/(1-6*x+3*x^2).

%F a(n) = 3^((n-1)/2)*(sqrt(3)*ChebyshevU(n, sqrt(3)) + ChebyshevU(n-1, sqrt(3))). - _G. C. Greubel_, Jul 16 2021

%t LinearRecurrence[{6,-3}, {1,7}, 31] (* _G. C. Greubel_, Jul 16 2021 *)

%o (Magma) [ n le 2 select 6*n-5 else 6*Self(n-1)-3*Self(n-2): n in [1..21] ];

%o (Sage) [3^((n-1)/2)*(sqrt(3)*chebyshev_U(n, sqrt(3)) + chebyshev_U(n-1, sqrt(3))) for n in (0..30)] # _G. C. Greubel_, Jul 16 2021

%Y Cf. A154235, A164549.

%K nonn

%O 0,2

%A _Klaus Brockhaus_, Aug 15 2009