login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 10*a(n-1) - 17*a(n-2) for n > 1; a(0) = 1, a(1) = 11.
3

%I #21 Sep 08 2022 08:45:47

%S 1,11,93,743,5849,45859,359157,2811967,22014001,172336571,1349127693,

%T 10561555223,82680381449,647257375699,5067007272357,39666697336687,

%U 310527849736801,2430944642644331,19030472980917693,148978670884223303

%N a(n) = 10*a(n-1) - 17*a(n-2) for n > 1; a(0) = 1, a(1) = 11.

%C Binomial transform of A164546.

%C Fifth binomial transform of A164640.

%H Vincenzo Librandi, <a href="/A164547/b164547.txt">Table of n, a(n) for n = 0..144</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (10,-17).

%F a(n) = 10*a(n-1) - 17*a(n-2) for n > 1; a(0) = 1, a(1) = 11.

%F a(n) = ((2+3*sqrt(2))*(5+2*sqrt(2))^n + (2-3*sqrt(2))*(5-2*sqrt(2))^n)/4.

%F G.f.: (1+x)/(1 - 10*x + 17*x^2).

%F a(n) = (17)^((n-1)/2)*(sqrt(17)*ChebyshevU(n, 5/sqrt(17)) + ChebyshevU(n-1, 5/sqrt(17))). - _G. C. Greubel_, Jul 17 2021

%t LinearRecurrence[{10,-17},{1,11},30] (* _Harvey P. Dale_, Jun 04 2012 *)

%o (Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-2); S:=[ ((2+3*r)*(5+2*r)^n+(2-3*r)*(5-2*r)^n)/4: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // _Klaus Brockhaus_, Aug 19 2009

%o (Sage) [(17)^((n-1)/2)*(sqrt(17)*chebyshev_U(n, 5/sqrt(17)) + chebyshev_U(n-1, 5/sqrt(17))) for n in (0..30)] # _G. C. Greubel_, Jul 17 2021

%Y Cf. A164546, A164640.

%K nonn,easy

%O 0,2

%A Al Hakanson (hawkuu(AT)gmail.com), Aug 15 2009

%E Edited and extended beyond a(5) by _Klaus Brockhaus_, Aug 19 2009