login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A164544 a(n) = 2*a(n-1) + 7*a(n-2) for n > 1; a(0) = 1, a(1) = 7. 5
1, 7, 21, 91, 329, 1295, 4893, 18851, 71953, 275863, 1055397, 4041835, 15471449, 59235743, 226771629, 868193459, 3323788321, 12724930855, 48716379957, 186507275899, 714029211497, 2733609354287, 10465423189053, 40066111858115 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Binomial transform of A164640. Inverse binomial transform of A164545.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..178

Index entries for linear recurrences with constant coefficients, signature (2,7).

FORMULA

a(n) = 2*a(n-1) + 7*a(n-2) for n > 1; a(0) = 1, a(1) = 7.

a(n) = ((2+3*sqrt(2))*(1+2*sqrt(2))^n + (2-3*sqrt(2))*(1-2*sqrt(2))^n)/4.

G.f.: (1+5*x)/(1-2*x-7*x^2).

a(n)/a(n-1) ~ 1 + 2*sqrt(2). - Kyle MacLean Smith, Dec 15 2019

E.g.f.: exp(x)*cosh(2*sqrt(2)*x) + 3*exp(x)*sinh(2*sqrt(2)*x)/sqrt(2). - Stefano Spezia, Dec 16 2019

From G. C. Greubel, Jul 18 2021: (Start)

a(n) = (i*sqrt(7))^(n-1)*(i*sqrt(7)*ChebyshevU(n, -i/sqrt(7)) + 5*ChebyshevU(n-1, -i/sqrt(7))).

a(n) = Sum_{j=0..floor(n/2)} binomial(n-k, k)*((7*n -12*k)/(n-k))*7^k*2^(n-2*k-1). (End)

MATHEMATICA

LinearRecurrence[{2, 7}, {1, 7}, 40] (* Harvey P. Dale, Jul 15 2012 *)

PROG

(Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-2); S:=[ ((2+3*r)*(1+2*r)^n+(2-3*r)*(1-2*r)^n)/4: n in [0..23] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 19 2009

(Sage) [(i*sqrt(7))^(n-1)*(i*sqrt(7)*chebyshev_U(n, -i/sqrt(7)) + 5*chebyshev_U(n-1, -i/sqrt(7))) for n in (0..40)] # G. C. Greubel, Jul 18 2021

CROSSREFS

Cf. A164545, A164640.

Sequence in context: A092785 A114902 A177369 * A100025 A121157 A347863

Adjacent sequences: A164541 A164542 A164543 * A164545 A164546 A164547

KEYWORD

nonn,easy

AUTHOR

Al Hakanson (hawkuu(AT)gmail.com), Aug 15 2009

EXTENSIONS

Edited and extended beyond a(5) by Klaus Brockhaus, Aug 19 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 20 11:53 EDT 2023. Contains 361375 sequences. (Running on oeis4.)