login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163761
a(n) = 10*n*(n+1).
3
0, 20, 60, 120, 200, 300, 420, 560, 720, 900, 1100, 1320, 1560, 1820, 2100, 2400, 2720, 3060, 3420, 3800, 4200, 4620, 5060, 5520, 6000, 6500, 7020, 7560, 8120, 8700, 9300, 9920, 10560, 11220, 11900, 12600, 13320, 14060, 14820, 15600, 16400, 17220, 18060, 18920
OFFSET
0,2
COMMENTS
20 times the n-th triangular number.
a(n) is the number of one-sided n-step prudent walks, from (0,0) to (3,3), for n-6 is even. - Shanzhen Gao, Apr 26 2011
Numbers k such that 10*k + 25 is a square. - Bruno Berselli, May 14 2018
LINKS
Shanzhen Gao and Keh-Hsun Chen, Tackling Sequences From Prudent Self-Avoiding Walks, FCS'14, The 2014 International Conference on Foundations of Computer Science.
Shanzhen Gao and H. Niederhausen, Sequences Arising From Prudent Self-Avoiding Walks, (submitted to INTEGERS: The Electronic Journal of Combinatorial Number Theory).
FORMULA
a(n) = 20*A000217(n) = 10*A002378(n).
G.f.: 20*x/(1-x)^3.
E.g.f.: 10*x*(x+2)*exp(x). - G. C. Greubel, Aug 03 2017
From Amiram Eldar, Feb 22 2023: (Start)
Sum_{n>=1} 1/a(n) = 1/10.
Sum_{n>=1} (-1)^(n+1)/a(n) = (2*log(2) - 1)/10.
Product_{n>=1} (1 - 1/a(n)) = -(10/Pi)*cos(sqrt(7/5)*Pi/2).
Product_{n>=1} (1 + 1/a(n)) = (10/Pi)*cos(sqrt(3/5)*Pi/2). (End)
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {0, 20, 60}, 50] (* or *) Table[10*n*(n+1), {n, 0, 50}] (* G. C. Greubel, Aug 03 2017 *)
PROG
(Magma) [10*n*(n+1): n in [0..50]];
(PARI) a(n)=10*n*(n+1) \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
Sequence in context: A220046 A275167 A344200 * A154072 A078184 A362268
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Aug 03 2009
EXTENSIONS
Entries checked by R. J. Mathar, Aug 06 2009
STATUS
approved