login
A163763
Sqrt(sigma(A008847(n)^2)), where A008847 lists m such that sigma(m^2) is a square.
4
1, 11, 31, 341, 1729, 2821, 19019, 31031, 43617, 43491, 68961, 72219, 82677, 86583, 117831, 117831, 187131, 347529, 347529, 479787, 503347, 414309, 436107, 496713, 478401, 503347, 758571, 794409, 909447, 952413, 658749, 696787, 696787
OFFSET
1,2
COMMENTS
Note that a(k)=a(k+1) for k=15, 18, 32, 90, 231,... - Zak Seidov, May 02 2016
LINKS
Zak Seidov and Donovan Johnson, Table of n, a(n) for n = 1..400 (first 161 terms from Zak Seidov)
MATHEMATICA
Select[Sqrt@ DivisorSigma[1, #^2] &@ Range[10^6], IntegerQ] (* Michael De Vlieger, May 02 2016, after Harvey P. Dale at A008847 *)
PROG
(PARI) lista(nn) = {for (n=1, nn, if (issquare(s = sigma(n^2)), print1(sqrtint(s), ", ")); ); } \\ Michel Marcus, May 02 2016
CROSSREFS
Cf. A163764.
Sequence in context: A068715 A093881 A328715 * A201808 A111015 A143765
KEYWORD
nonn
AUTHOR
M. F. Hasler, Aug 03 2009
STATUS
approved