login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 10*n*(n+1).
3

%I #52 Feb 22 2023 01:48:57

%S 0,20,60,120,200,300,420,560,720,900,1100,1320,1560,1820,2100,2400,

%T 2720,3060,3420,3800,4200,4620,5060,5520,6000,6500,7020,7560,8120,

%U 8700,9300,9920,10560,11220,11900,12600,13320,14060,14820,15600,16400,17220,18060,18920

%N a(n) = 10*n*(n+1).

%C 20 times the n-th triangular number.

%C a(n) is the number of one-sided n-step prudent walks, from (0,0) to (3,3), for n-6 is even. - _Shanzhen Gao_, Apr 26 2011

%C Numbers k such that 10*k + 25 is a square. - _Bruno Berselli_, May 14 2018

%H Vincenzo Librandi, <a href="/A163761/b163761.txt">Table of n, a(n) for n = 0..875</a>

%H John Elias, <a href="/A163761/a163761.png">Illustration of Initial Terms: Correlation of 10k+25 is a square</a>.

%H Shanzhen Gao and Keh-Hsun Chen, <a href="http://worldcomp-proceedings.com/proc/p2014/FCS2696.pdf">Tackling Sequences From Prudent Self-Avoiding Walks</a>, FCS'14, The 2014 International Conference on Foundations of Computer Science.

%H Shanzhen Gao and H. Niederhausen, <a href="http://math.fau.edu/Niederhausen/HTML/Papers/Sequences%20Arising%20From%20Prudent%20Self-Avoiding%20Walks-February%2001-2010.pdf">Sequences Arising From Prudent Self-Avoiding Walks</a>, (submitted to INTEGERS: The Electronic Journal of Combinatorial Number Theory).

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F a(n) = 20*A000217(n) = 10*A002378(n).

%F G.f.: 20*x/(1-x)^3.

%F E.g.f.: 10*x*(x+2)*exp(x). - _G. C. Greubel_, Aug 03 2017

%F From _Amiram Eldar_, Feb 22 2023: (Start)

%F Sum_{n>=1} 1/a(n) = 1/10.

%F Sum_{n>=1} (-1)^(n+1)/a(n) = (2*log(2) - 1)/10.

%F Product_{n>=1} (1 - 1/a(n)) = -(10/Pi)*cos(sqrt(7/5)*Pi/2).

%F Product_{n>=1} (1 + 1/a(n)) = (10/Pi)*cos(sqrt(3/5)*Pi/2). (End)

%t LinearRecurrence[{3,-3,1},{0,20,60}, 50] (* or *) Table[10*n*(n+1), {n,0,50}] (* _G. C. Greubel_, Aug 03 2017 *)

%o (Magma) [10*n*(n+1): n in [0..50]];

%o (PARI) a(n)=10*n*(n+1) \\ _Charles R Greathouse IV_, Jun 17 2017

%Y Cf. A000217, A002378.

%K nonn,easy

%O 0,2

%A _Vincenzo Librandi_, Aug 03 2009

%E Entries checked by _R. J. Mathar_, Aug 06 2009