login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163714
Number of n X 2 binary arrays with all 1s connected, a path of 1s from top row to bottom row, and no 1 having more than two 1s adjacent.
3
3, 7, 10, 16, 26, 42, 68, 110, 178, 288, 466, 754, 1220, 1974, 3194, 5168, 8362, 13530, 21892, 35422, 57314, 92736, 150050, 242786, 392836, 635622, 1028458, 1664080, 2692538, 4356618, 7049156, 11405774, 18454930, 29860704, 48315634, 78176338
OFFSET
1,1
COMMENTS
Same recurrence for A163695.
Same recurrence for A163733.
LINKS
FORMULA
Empirical: a(n) = a(n-1) + a(n-2) for n>=5.
Conjectures from Colin Barker, Feb 22 2018: (Start)
G.f.: x*(1 + x)*(3 + x - x^2) / (1 - x - x^2).
a(n) = (2^(-n)*((1-sqrt(5))^n*(-3+sqrt(5)) + (1+sqrt(5))^n*(3+sqrt(5)))) / sqrt(5) for n>2.
(End)
EXAMPLE
All solutions for n=4:
...1.0...1.0...1.1...1.1...0.1...0.1...1.1...1.1...1.0...1.1...1.0...1.0...0.1
...1.0...1.0...1.0...1.0...0.1...0.1...0.1...0.1...1.0...1.0...1.1...1.1...0.1
...1.0...1.0...1.0...1.0...0.1...0.1...0.1...0.1...1.1...1.1...0.1...0.1...1.1
...1.0...1.1...1.0...1.1...0.1...1.1...0.1...1.1...0.1...0.1...0.1...1.1...1.0
------
...1.1...0.1...0.1
...0.1...1.1...1.1
...1.1...1.0...1.0
...1.0...1.0...1.1
CROSSREFS
Cf. A090991, A078642, A047992. - R. J. Mathar, Aug 06 2009
Sequence in context: A114113 A100056 A359147 * A333910 A307191 A234638
KEYWORD
nonn
AUTHOR
R. H. Hardin, Aug 03 2009
STATUS
approved