|
|
A163714
|
|
Number of n X 2 binary arrays with all 1s connected, a path of 1s from top row to bottom row, and no 1 having more than two 1s adjacent.
|
|
3
|
|
|
3, 7, 10, 16, 26, 42, 68, 110, 178, 288, 466, 754, 1220, 1974, 3194, 5168, 8362, 13530, 21892, 35422, 57314, 92736, 150050, 242786, 392836, 635622, 1028458, 1664080, 2692538, 4356618, 7049156, 11405774, 18454930, 29860704, 48315634, 78176338
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Same recurrence for A163695.
Same recurrence for A163733.
|
|
LINKS
|
R. H. Hardin, Table of n, a(n) for n=1..100
|
|
FORMULA
|
Empirical: a(n) = a(n-1) + a(n-2) for n>=5.
Conjectures from Colin Barker, Feb 22 2018: (Start)
G.f.: x*(1 + x)*(3 + x - x^2) / (1 - x - x^2).
a(n) = (2^(-n)*((1-sqrt(5))^n*(-3+sqrt(5)) + (1+sqrt(5))^n*(3+sqrt(5)))) / sqrt(5) for n>2.
(End)
|
|
EXAMPLE
|
All solutions for n=4:
...1.0...1.0...1.1...1.1...0.1...0.1...1.1...1.1...1.0...1.1...1.0...1.0...0.1
...1.0...1.0...1.0...1.0...0.1...0.1...0.1...0.1...1.0...1.0...1.1...1.1...0.1
...1.0...1.0...1.0...1.0...0.1...0.1...0.1...0.1...1.1...1.1...0.1...0.1...1.1
...1.0...1.1...1.0...1.1...0.1...1.1...0.1...1.1...0.1...0.1...0.1...1.1...1.0
------
...1.1...0.1...0.1
...0.1...1.1...1.1
...1.1...1.0...1.0
...1.0...1.0...1.1
|
|
CROSSREFS
|
Cf. A090991, A078642, A047992. - R. J. Mathar, Aug 06 2009
Sequence in context: A088636 A114113 A100056 * A333910 A307191 A234638
Adjacent sequences: A163711 A163712 A163713 * A163715 A163716 A163717
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
R. H. Hardin, Aug 03 2009
|
|
STATUS
|
approved
|
|
|
|