login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163655
a(n) = n*(2*n^2 + 5*n + 13)/2.
2
0, 10, 31, 69, 130, 220, 345, 511, 724, 990, 1315, 1705, 2166, 2704, 3325, 4035, 4840, 5746, 6759, 7885, 9130, 10500, 12001, 13639, 15420, 17350, 19435, 21681, 24094, 26680, 29445, 32395, 35536, 38874, 42415, 46165, 50130, 54316, 58729, 63375
OFFSET
0,2
FORMULA
Row sums from A163652: a(n) = Sum_{m=1..n} (2*m*n + m + n + 6).
G.f.: x*(10 - 9*x + 5*x^2)/(x-1)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
E.g.f.: (1/2)*x*(20 + 11*x + 2*x^2)*exp(x). - G. C. Greubel, Aug 01 2017
MATHEMATICA
CoefficientList[Series[x*(10-9*x+5*x^2)/(x-1)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 05 2012 *)
LinearRecurrence[{4, -6, 4, -1}, {0, 10, 31, 69}, 50] (* G. C. Greubel, Aug 01 2017 *)
PROG
(PARI) x='x+O('x^50); concat([0], Vec(x*(10-9*x+5*x^2)/(x-1)^4)) \\ G. C. Greubel, Aug 01 2017
CROSSREFS
Cf. A163652.
Sequence in context: A192023 A219693 A297507 * A041190 A111500 A342362
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Aug 02 2009
EXTENSIONS
Edited by R. J. Mathar, Aug 05 2009
STATUS
approved