login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A041190
Numerators of continued fraction convergents to sqrt(106).
2
10, 31, 72, 103, 175, 278, 453, 1184, 4005, 81284, 247857, 576998, 824855, 1401853, 2226708, 3628561, 9483830, 32080051, 651084850, 1985334601, 4621754052, 6607088653, 11228842705, 17835931358, 29064774063, 75965479484, 256961212515, 5215189729784
OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,8010,0,0,0,0,0,0,0,0,1).
FORMULA
G.f.: -(x^17 -10*x^16 +31*x^15 -72*x^14 +103*x^13 -175*x^12 +278*x^11 -453*x^10 +1184*x^9 +4005*x^8 +1184*x^7 +453*x^6 +278*x^5 +175*x^4 +103*x^3 +72*x^2 +31*x +10) / (x^18 +8010*x^9 -1). - Colin Barker, Nov 08 2013
MATHEMATICA
Numerator[Convergents[Sqrt[106], 30]] (* Vincenzo Librandi, Oct 30 2013 *)
PROG
(Python)
from sympy import sqrt
from sympy.ntheory.continued_fraction import *
def aupton(terms):
g = continued_fraction_convergents(continued_fraction_iterator(sqrt(106)))
return [next(g).numerator() for n in range(terms)]
print(aupton(28)) # Michael S. Branicky, Oct 31 2021
CROSSREFS
Sequence in context: A219693 A297507 A163655 * A111500 A342362 A161325
KEYWORD
nonn,cofr,frac,easy
AUTHOR
EXTENSIONS
More terms from Colin Barker, Nov 08 2013
STATUS
approved