Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Nov 01 2021 03:28:22
%S 10,31,72,103,175,278,453,1184,4005,81284,247857,576998,824855,
%T 1401853,2226708,3628561,9483830,32080051,651084850,1985334601,
%U 4621754052,6607088653,11228842705,17835931358,29064774063,75965479484,256961212515,5215189729784
%N Numerators of continued fraction convergents to sqrt(106).
%H Vincenzo Librandi, <a href="/A041190/b041190.txt">Table of n, a(n) for n = 0..200</a>
%H <a href="/index/Rec#order_18">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,0,8010,0,0,0,0,0,0,0,0,1).
%F G.f.: -(x^17 -10*x^16 +31*x^15 -72*x^14 +103*x^13 -175*x^12 +278*x^11 -453*x^10 +1184*x^9 +4005*x^8 +1184*x^7 +453*x^6 +278*x^5 +175*x^4 +103*x^3 +72*x^2 +31*x +10) / (x^18 +8010*x^9 -1). - _Colin Barker_, Nov 08 2013
%t Numerator[Convergents[Sqrt[106], 30]] (* _Vincenzo Librandi_, Oct 30 2013 *)
%o (Python)
%o from sympy import sqrt
%o from sympy.ntheory.continued_fraction import *
%o def aupton(terms):
%o g = continued_fraction_convergents(continued_fraction_iterator(sqrt(106)))
%o return [next(g).numerator() for n in range(terms)]
%o print(aupton(28)) # _Michael S. Branicky_, Oct 31 2021
%Y Cf. A041191, A010172.
%K nonn,cofr,frac,easy
%O 0,1
%A _N. J. A. Sloane_.
%E More terms from _Colin Barker_, Nov 08 2013