login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192023
The Wiener index of the comb-shaped graph |_|_|...|_| with 2n (n>=1) nodes. The Wiener index of a connected graph is the sum of the distances between all unordered pairs of vertices in the graph.
3
1, 10, 31, 68, 125, 206, 315, 456, 633, 850, 1111, 1420, 1781, 2198, 2675, 3216, 3825, 4506, 5263, 6100, 7021, 8030, 9131, 10328, 11625, 13026, 14535, 16156, 17893, 19750, 21731, 23840, 26081, 28458, 30975, 33636, 36445, 39406, 42523, 45800, 49241, 52850, 56631
OFFSET
1,2
COMMENTS
The Wiener polynomials of these graphs are given in A192022.
a(n) = Sum_{k>=1} A192022(n,k).
Conjecture: for n>2, A192023(n-2) is the number of 2 X 2 matrices with all terms in {1,2,...,n} and determinant 2n. - Clark Kimberling, Mar 31 2012
FORMULA
a(n) = n*(2*n^2 + 6*n - 5)/3.
G.f.: -x*(-1 - 6*x + 3*x^2) / (x-1)^4. - R. J. Mathar, Jun 26 2011
EXAMPLE
a(2)=10 because in the graph |_| there are 3 pairs of nodes at distance 1, 2 pairs at distance 2, and 1 pair at distance 3 (3*1 + 2*2 + 1*3 = 10).
MAPLE
a := proc (n) options operator: arrow: (1/3)*n*(2*n^2+6*n-5) end proc: seq(a(n), n = 1 .. 43);
PROG
(Magma) [n*(2*n^2+6*n-5)/3: n in [1..50]]; // Vincenzo Librandi, Jul 04 2011
CROSSREFS
Cf. A192022.
Sequence in context: A085473 A051943 A059306 * A219693 A297507 A163655
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Jun 24 2011
STATUS
approved