login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n*(2*n^2 + 5*n + 13)/2.
2

%I #14 Dec 17 2019 05:30:31

%S 0,10,31,69,130,220,345,511,724,990,1315,1705,2166,2704,3325,4035,

%T 4840,5746,6759,7885,9130,10500,12001,13639,15420,17350,19435,21681,

%U 24094,26680,29445,32395,35536,38874,42415,46165,50130,54316,58729,63375

%N a(n) = n*(2*n^2 + 5*n + 13)/2.

%H Vincenzo Librandi, <a href="/A163655/b163655.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).

%F Row sums from A163652: a(n) = Sum_{m=1..n} (2*m*n + m + n + 6).

%F G.f.: x*(10 - 9*x + 5*x^2)/(x-1)^4.

%F a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).

%F E.g.f.: (1/2)*x*(20 + 11*x + 2*x^2)*exp(x). - _G. C. Greubel_, Aug 01 2017

%t CoefficientList[Series[x*(10-9*x+5*x^2)/(x-1)^4,{x,0,40}],x] (* _Vincenzo Librandi_, Mar 05 2012 *)

%t LinearRecurrence[{4,-6,4,-1}, {0,10,31,69}, 50] (* _G. C. Greubel_, Aug 01 2017 *)

%o (PARI) x='x+O('x^50); concat([0], Vec(x*(10-9*x+5*x^2)/(x-1)^4)) \\ _G. C. Greubel_, Aug 01 2017

%Y Cf. A163652.

%K nonn,easy

%O 0,2

%A _Vincenzo Librandi_, Aug 02 2009

%E Edited by _R. J. Mathar_, Aug 05 2009