login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163366
a(n) = (-1)^floor((prime(n)+2)/2) mod prime(n).
3
1, 1, 4, 1, 1, 12, 16, 1, 1, 28, 1, 36, 40, 1, 1, 52, 1, 60, 1, 1, 72, 1, 1, 88, 96, 100, 1, 1, 108, 112, 1, 1, 136, 1, 148, 1, 156, 1, 1, 172, 1, 180, 1, 192, 196, 1, 1, 1, 1, 228, 232, 1, 240, 1, 256, 1, 268, 1, 276, 280, 1, 292, 1, 1, 312, 316, 1, 336, 1, 348, 352, 1, 1, 372, 1
OFFSET
1,3
COMMENTS
Remove the '1's from the sequence to get A152680.
Product modulo p of the quadratic residues of p, where p = prime(n). [Jonathan Sondow, May 14 2010]
REFERENCES
Carl-Erik Froeberg, On sums and products of quadratic residues, BIT, Nord. Tidskr. Inf.-behandl. 11 (1971) 389-398. [Jonathan Sondow, May 14 2010]
FORMULA
a(n)*A177863(n) == -1 (mod prime(n)), by Wilson's theorem. - Jonathan Sondow, May 14 2010
a(n) = A177860(n) modulo prime(n). - Jonathan Sondow, May 14 2010
EXAMPLE
a(4) = 1 because the quadratic residues of prime(4) = 7 are 1, 2, and 4, and 1*2*4 = 8 == 1 (mod 7). - Jonathan Sondow, May 14 2010
MAPLE
seq((-1)^iquo(ithprime(i)+2, 2) mod ithprime(i), i=1..113);
MATHEMATICA
Table[Mod[ Apply[Times, Flatten[Position[ Table[JacobiSymbol[i, Prime[n]], {i, 1, Prime[n] - 1}], 1]]], Prime[n]], {n, 1, 80}] (* Jonathan Sondow, May 14 2010 *)
CROSSREFS
Cf. A177860, A177863. - Jonathan Sondow, May 14 2010
Sequence in context: A220688 A146990 A051433 * A181145 A227203 A140070
KEYWORD
nonn
AUTHOR
Peter Luschny, Jul 25 2009
STATUS
approved