Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Dec 21 2016 11:47:10
%S 1,1,4,1,1,12,16,1,1,28,1,36,40,1,1,52,1,60,1,1,72,1,1,88,96,100,1,1,
%T 108,112,1,1,136,1,148,1,156,1,1,172,1,180,1,192,196,1,1,1,1,228,232,
%U 1,240,1,256,1,268,1,276,280,1,292,1,1,312,316,1,336,1,348,352,1,1,372,1
%N a(n) = (-1)^floor((prime(n)+2)/2) mod prime(n).
%C Remove the '1's from the sequence to get A152680.
%C Product modulo p of the quadratic residues of p, where p = prime(n). [_Jonathan Sondow_, May 14 2010]
%D Carl-Erik Froeberg, On sums and products of quadratic residues, BIT, Nord. Tidskr. Inf.-behandl. 11 (1971) 389-398. [_Jonathan Sondow_, May 14 2010]
%H G. C. Greubel, <a href="/A163366/b163366.txt">Table of n, a(n) for n = 1..1000</a>
%H Rahul Gupta, <a href="http://www.cse.iitd.ernet.in/~sak/courses/ant/notes/ant.pdf">Algorithmic Number Theory, Section 24.5</a> [_Jonathan Sondow_, May 14 2010]
%F a(n)*A177863(n) == -1 (mod prime(n)), by Wilson's theorem. - _Jonathan Sondow_, May 14 2010
%F a(n) = A177860(n) modulo prime(n). - _Jonathan Sondow_, May 14 2010
%e a(4) = 1 because the quadratic residues of prime(4) = 7 are 1, 2, and 4, and 1*2*4 = 8 == 1 (mod 7). - _Jonathan Sondow_, May 14 2010
%p seq((-1)^iquo(ithprime(i)+2,2) mod ithprime(i),i=1..113);
%t Table[Mod[ Apply[Times, Flatten[Position[ Table[JacobiSymbol[i, Prime[n]], {i, 1, Prime[n] - 1}], 1]]], Prime[n]], {n, 1, 80}] (* _Jonathan Sondow_, May 14 2010 *)
%Y Cf. A152680, A005098, A002144, A009003.
%Y Cf. A177860, A177863. - _Jonathan Sondow_, May 14 2010
%K nonn
%O 1,3
%A _Peter Luschny_, Jul 25 2009