OFFSET
0,3
COMMENTS
Compare g.f. to that of the triangle A034870:
* exp( Sum_{n>=1} [Sum_{k=0..2n} C(2n,k)*y^k]*x^n/n )
which consists of the even numbered rows of Pascal's triangle.
FORMULA
Row sums form A066357 (with offset), the number of ordered trees on 2n nodes with every subtree at the root having an even number of edges.
EXAMPLE
G.f.: A(x,y) = 1 + (1+ 4*y+ y^2)*x + (1 + 12*y+ 27*y^2+ 12*y^3+ y^4)*x^2 + (1+ 24*y+ 134*y^2+ 236*y^3+ 134*y^4+ 24*y^5+ y^6)*x^3 +...
The logarithm of the g.f. begins:
log(A(x,y)) = (1 + 2^2*y + y^2)*x
+ (1 + 4^2*y + 6^2*y^2 + 4^2*y^3 + y^4)*x^2/2
+ (1 + 6^2*y + 15^2*y^2 + 20^2*y^3 + 15^2*y^4 + 6^2*y^5 + y^6)*x^3/3
+ (1 + 8^2*y + 28^2*y^2 + 56^2*y^3 + 70^2*y^4 + 56^2*y^5 + 28^2*y^6 + 8^2*y^7 + y^8)*x^4/4 +...
Triangle begins:
1;
1, 4, 1;
1, 12, 27, 12, 1;
1, 24, 134, 236, 134, 24, 1;
1, 40, 410, 1540, 2380, 1540, 410, 40, 1;
1, 60, 975, 6260, 18386, 26216, 18386, 6260, 975, 60, 1;
1, 84, 1981, 19320, 91441, 227052, 306495, 227052, 91441, 19320, 1981, 84, 1;
1, 112, 3612, 49672, 344260, 1312080, 2883562, 3740572, 2883562, 1312080, 344260, 49672, 3612, 112, 1; ...
PROG
(PARI) {T(n, k)=polcoeff(polcoeff(exp(sum(m=1, n, sum(j=0, 2*m, binomial(2*m, j)^2*y^j)*x^m/m)+O(x^(n+1))), n, x), k, y)}
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Oct 16 2010
EXTENSIONS
Comment and example corrected by Paul D. Hanna, Oct 16 2010
STATUS
approved