login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163317
Number of reduced words of length n in Coxeter group on 6 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.
1
1, 6, 30, 150, 750, 3735, 18600, 92640, 461400, 2298000, 11445210, 57003000, 283904040, 1413987000, 7042377000, 35074632060, 174689570400, 870043225440, 4333259349600, 21581843340000, 107488595621160, 535348070440800
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A003948, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
FORMULA
G.f.: (t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(10*t^5 - 4*t^4 - 4*t^3 - 4*t^2 - 4*t + 1).
a(n) = 4*a(n-1)+4*a(n-2)+4*a(n-3)+4*a(n-4)-10*a(n-5). - Wesley Ivan Hurt, May 10 2021
MATHEMATICA
CoefficientList[Series[(1+x)*(1-x^5)/(1-5*x+14*x^5-10*x^6), {x, 0, 30}], x] (* or *) LinearRecurrence[{4, 4, 4, 4, -10}, {1, 6, 30, 150, 750, 3735}, 30] (* G. C. Greubel, Dec 18 2016 *)
coxG[{5, 10, -4}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 12 2019 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((1+x)*(1-x^5)/(1-5*x+14*x^5-10*x^6)) \\ G. C. Greubel, Dec 18 2016
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^5)/(1-5*x+14*x^5-10*x^6) )); // G. C. Greubel, May 12 2019
(Sage) ((1+x)*(1-x^5)/(1-5*x+14*x^5-10*x^6)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 12 2019
CROSSREFS
Sequence in context: A162937 A006818 A006819 * A342807 A163922 A164365
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved