The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A163314 Number of reduced words of length n in Coxeter group on 3 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I. 1
 1, 3, 6, 12, 24, 45, 84, 159, 300, 564, 1062, 2001, 3768, 7095, 13362, 25164, 47388, 89241, 168060, 316491, 596016, 1122420, 2113746, 3980613, 7496304, 14117067, 26585310, 50065548, 94283616, 177555237, 334372644, 629691735, 1185837684 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The initial terms coincide with those of A003945, although the two sequences are eventually different. Computed with MAGMA using commands similar to those used to compute A154638. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 M. O'Keeffe, Coordination sequences for hyperbolic tilings, Zeitschrift für Kristallographie, 213 (1998), 135-140 (see next-to-last table, row {10, 3}). Index entries for linear recurrences with constant coefficients, signature (2, -1, 2, -1). FORMULA G.f.: (t^4 + t^3 + t^2 + t + 1)/(t^4 - 2*t^3 + t^2 - 2*t + 1). a(n) = 2*a(n-1)-a(n-2)+2*a(n-3)-a(n-4). - Wesley Ivan Hurt, May 10 2021 MATHEMATICA CoefficientList[Series[(t^4+t^3+t^2+t+1)/(t^4-2*t^3+t^2-2*t+1), {t, 0, 40} ], t] (* or *) LinearRecurrence[{2, -1, 2, -1}, {1, 3, 6, 12, 24}, 40] (* G. C. Greubel, Dec 18 2016 *) PROG (PARI) my(t='t+O('t^40)); Vec((t^4+t^3+t^2+t+1)/(t^4-2*t^3+t^2-2*t+1)) \\ G. C. Greubel, Dec 18 2016 (MAGMA) R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (x^4+x^3 +x^2+x+1)/(x^4-2*x^3+x^2-2*x+1) )); // G. C. Greubel, May 12 2019 (Sage) ((x^4+x^3 +x^2+x+1)/(x^4-2*x^3+x^2-2*x+1)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, May 12 2019 (GAP) a:=[3, 6, 12, 24];; for n in [5..40] do a[n]:=2*a[n-1]-a[n-2]+ 2*a[n-3]-a[n-4]; od; Concatenation([1], a); # G. C. Greubel, May 12 2019 CROSSREFS Sequence in context: A336758 A132974 A132979 * A018183 A196787 A200662 Adjacent sequences:  A163311 A163312 A163313 * A163315 A163316 A163317 KEYWORD nonn AUTHOR John Cannon and N. J. A. Sloane, Dec 03 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 18 00:36 EST 2022. Contains 350410 sequences. (Running on oeis4.)