login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A163279 a(n) = (n^6 + 2n^5 + 2n^4 + n^3 + 2n)/2. 1
4, 86, 705, 3364, 11630, 32514, 78211, 168200, 331704, 610510, 1062149, 1763436, 2814370, 4342394, 6507015, 9504784, 13574636, 19003590, 26132809, 35364020, 47166294, 62083186, 80740235, 103852824, 132234400, 166805054, 208600461 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Before this sequence, a(5) = 11630 was an uninteresting number, see Links section. - Omar E. Pol, Apr 25 2016

LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 1..1000

Charles R Greathouse IV, Uninteresting numbers

Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).

FORMULA

G.f.: x*(4 + 58*x + 187*x^2 + 95*x^3 + 17*x^4 - x^5)/(1 - x)^7. - Ilya Gutkovskiy, Apr 25 2016

MATHEMATICA

Array[Function[n, (n^6 + 2 n^5 + 2 n^4 + n^3 + 2 n)/2], {27}] (* or *)

Rest@ CoefficientList[Series[x (4 + 58 x + 187 x^2 + 95 x^3 + 17 x^4 - x^5)/(1 - x)^7, {x, 0, 27}], x] (* Michael De Vlieger, Apr 25 2016 *)

LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {4, 86, 705, 3364, 11630, 32514, 78211}, 30] (* Harvey P. Dale, Mar 08 2018 *)

PROG

(MATLAB) for n=1:354 a(n) = n^2*((n*(n+1))^2 + n*(n+1) + 2/n)/2; end

% Kyle Stern, Jan 05 2010

(PARI) a(n)=(n^6+n^3)/2+n^5+n^4+n \\ Charles R Greathouse IV, Jul 29 2011

CROSSREFS

Cf. A000290, A002378, A035287.

Sequence in context: A055776 A055591 A055764 * A130268 A293318 A204460

Adjacent sequences:  A163276 A163277 A163278 * A163280 A163281 A163282

KEYWORD

easy,nonn

AUTHOR

Omar E. Pol, Nov 07 2009

EXTENSIONS

More terms from Kyle Stern, Jan 05 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 30 17:21 EDT 2021. Contains 346359 sequences. (Running on oeis4.)