login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055776
a(n) = a(n-1)^3 + a(n-1)^2 + a(n-1) + 1.
0
0, 1, 4, 85, 621436, 239988219843053389, 13821964488793901254190711941736196403535171578341580
OFFSET
0,3
COMMENTS
The next term has 157 digits. - Harvey P. Dale, Dec 08 2019
REFERENCES
Mordechai Ben-Ari, Mathematical Logic for Computer Science, Third edition, 173-203
LINKS
Damiano Zanardini, Computational Logic, UPM European Master in Computational Logic (EMCL) School of Computer Science Technical University of Madrid.
FORMULA
a(n) is asymptotic to c^(3^(n+1)) where c=1.056431004248312118265251254776175173104598976924006344252579493163876246969557582... - Gerald McGarvey, Dec 08 2007, corrected by Vaclav Kotesovec, Apr 03 2016
a(2n) mod 2 = 0 ; a(2n+1) mod 2 = 1. - Altug Alkan, Oct 04 2015
EXAMPLE
a(3) = 4^3 + 4^2 + 4 + 1 = 64 + 16 + 4 + 1 = 85.
MATHEMATICA
RecurrenceTable[{a[n] == a[n - 1]^3 + a[n - 1]^2 + a[n - 1] + 1, a[0] == 0}, a, {n, 0, 6}] (* Michael De Vlieger, Oct 05 2015 *)
NestList[#^3+#^2+#+1&, 0, 7] (* Harvey P. Dale, Dec 08 2019 *)
PROG
(PARI) a=vector(6); a[1]=1; print1("0, 1, "); for(n=2, 6, a[n]=a[n-1]^3+a[n-1]^2+a[n-1]+1; print1(a[n], ", ")) \\ Gerald McGarvey, Dec 08 2007
(Magma) [n le 1 select 0 else Self(n-1)^3 + Self(n-1)^2 + Self(n-1) + 1: n in [1..15]]; // Vincenzo Librandi, Oct 05 2015
(PARI) a(n) = if(n==0, 0, a(n-1)^3 + a(n-1)^2 + a(n-1) + 1);
vector(10, n, a(n-1)) \\ Altug Alkan, Oct 06 2015
CROSSREFS
Cf. A002065.
Sequence in context: A189831 A223955 A116330 * A055591 A055764 A163279
KEYWORD
nonn
AUTHOR
Henry Bottomley, Jul 12 2000
EXTENSIONS
Next term is too big to include.
STATUS
approved