login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163229
A bisection of A162584.
3
2, 16, 96, 448, 1858, 6896, 23776, 76608, 234432, 684336, 1921472, 5206208, 13679490, 34941120, 87036576, 211822976, 504784704, 1179589728, 2707337056, 6109982400, 13575320320, 29721857904, 64184237216, 136816242816
OFFSET
1,1
LINKS
FORMULA
Define series bisections B_0(q) and B_1(q) of A162584, then
2*B_0(q)/B_1(q) = T16B(q) = q*eta(q^8)^6/(eta(q^4)^2*eta(q^16)^4),
the McKay-Thompson series of class 16B for the Monster group (A029839).
EXAMPLE
G.f.: B_1(q) = 2*q + 16*q^3 + 96*q^5 + 448*q^7 + 1858*q^9 + 6896*q^11 + ...
Bisection B_0(q) of A162584 begins:
B_0(q) = 1 + 8*q^2 + 50*q^4 + 240*q^6 + 1024*q^8 + 3888*q^10 + ...
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; nmax =250; a[n_]:= SeriesCoefficient[ Series[Exp[Sum[DivisorSigma[1, k]*2^(IntegerExponent[k, 2] + 1)*q^k/k, {k, 1, nmax}]], {q, 0, nmax}], 2*n + 1]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Jul 03 2018 *)
PROG
(PARI) {a(n)=local(L=sum(m=1, 2*n+1, 2*sigma(m)*2^valuation(m, 2)*x^m/m)+O(x^(2*n+2))); polcoeff(exp(L), 2*n+1)}
CROSSREFS
Cf. A162584, A163228 (B_0), A029839 (T16B).
Sequence in context: A295903 A362767 A141243 * A038749 A002699 A376844
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 26 2009
STATUS
approved