login
A163228
A bisection of A162584.
3
1, 8, 50, 240, 1024, 3888, 13696, 44960, 139970, 414904, 1181568, 3242928, 8623104, 22268752, 56039936, 137686048, 331039232, 780029536, 1804321074, 4102056144, 9177497600, 20225408480, 43948974720, 94236510112, 199549448704
OFFSET
0,2
LINKS
FORMULA
Define series bisections B_0(q) and B_1(q) of A162584, then
2*B_0(q)/B_1(q) = T16B(q) = q*eta(q^8)^6/(eta(q^4)^2*eta(q^16)^4),
the McKay-Thompson series of class 16B for the Monster group (A029839).
EXAMPLE
G.f.: B_0(q) = 1 + 8*q^2 + 50*q^4 + 240*q^6 + 1024*q^8 + 3888*q^10 + ...
Bisection B_1(q) of A162584 begins:
B_1(q) = 2*q + 16*q^3 + 96*q^5 + 448*q^7 + 1858*q^9 + 6896*q^11 + ...
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; nmax =250; a[n_]:= SeriesCoefficient[ Series[Exp[Sum[DivisorSigma[1, k]*2^(IntegerExponent[k, 2] + 1)*q^k/k, {k, 1, nmax}]], {q, 0, nmax}], 2*n]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Jul 03 2018 *)
PROG
(PARI) {a(n)=local(L=sum(m=1, 2*n, 2*sigma(m)*2^valuation(m, 2)*x^m/m)+O(x^(2*n+1))); polcoeff(exp(L), 2*n)}
CROSSREFS
Cf. A162584, A163229 (B_1), A029839 (T16B).
Sequence in context: A212063 A300318 A290617 * A033463 A030279 A133357
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 26 2009
STATUS
approved