login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163228
A bisection of A162584.
3
1, 8, 50, 240, 1024, 3888, 13696, 44960, 139970, 414904, 1181568, 3242928, 8623104, 22268752, 56039936, 137686048, 331039232, 780029536, 1804321074, 4102056144, 9177497600, 20225408480, 43948974720, 94236510112, 199549448704
OFFSET
0,2
LINKS
FORMULA
Define series bisections B_0(q) and B_1(q) of A162584, then
2*B_0(q)/B_1(q) = T16B(q) = q*eta(q^8)^6/(eta(q^4)^2*eta(q^16)^4),
the McKay-Thompson series of class 16B for the Monster group (A029839).
EXAMPLE
G.f.: B_0(q) = 1 + 8*q^2 + 50*q^4 + 240*q^6 + 1024*q^8 + 3888*q^10 + ...
Bisection B_1(q) of A162584 begins:
B_1(q) = 2*q + 16*q^3 + 96*q^5 + 448*q^7 + 1858*q^9 + 6896*q^11 + ...
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; nmax =250; a[n_]:= SeriesCoefficient[ Series[Exp[Sum[DivisorSigma[1, k]*2^(IntegerExponent[k, 2] + 1)*q^k/k, {k, 1, nmax}]], {q, 0, nmax}], 2*n]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Jul 03 2018 *)
PROG
(PARI) {a(n)=local(L=sum(m=1, 2*n, 2*sigma(m)*2^valuation(m, 2)*x^m/m)+O(x^(2*n+1))); polcoeff(exp(L), 2*n)}
CROSSREFS
Cf. A162584, A163229 (B_1), A029839 (T16B).
Sequence in context: A212063 A300318 A290617 * A033463 A030279 A133357
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 26 2009
STATUS
approved