OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..600
Index entries for linear recurrences with constant coefficients, signature (42, 42, 42, -903).
FORMULA
G.f.: (t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(903*t^4 - 42*t^3 - 42*t^2 - 42*t + 1).
a(n) = 42*a(n-1)+42*a(n-2)+42*a(n-3)-903*a(n-4). - Wesley Ivan Hurt, May 06 2021
MATHEMATICA
coxG[{4, 903, -42}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Apr 18 2015 *)
CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(903*t^4-42*t^3-42*t^2 - 42*t+1), {t, 0, 20}], t] (* or *) Join[{1}, LinearRecurrence[ {42, 42, 42, -903}, {44, 1892, 81356, 3497362}, 50]] (* G. C. Greubel, Dec 11 2016 *)
PROG
(PARI) my(t='t+O('t^20)); Vec((t^4+2*t^3+2*t^2+2*t+1)/(903*t^4-42*t^3 - 42*t^2-42*t+1)) \\ G. C. Greubel, Dec 11 2016
(Magma) R<x>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-43*x+945*x^4-903*x^5) )); // G. C. Greubel, Apr 30 2019
(Sage) ((1+x)*(1-x^4)/(1-43*x+945*x^4-903*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 30 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved