login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A bisection of A162584.
3

%I #7 Jul 04 2018 08:58:29

%S 2,16,96,448,1858,6896,23776,76608,234432,684336,1921472,5206208,

%T 13679490,34941120,87036576,211822976,504784704,1179589728,2707337056,

%U 6109982400,13575320320,29721857904,64184237216,136816242816

%N A bisection of A162584.

%H G. C. Greubel, <a href="/A163229/b163229.txt">Table of n, a(n) for n = 1..1001</a>

%F Define series bisections B_0(q) and B_1(q) of A162584, then

%F 2*B_0(q)/B_1(q) = T16B(q) = q*eta(q^8)^6/(eta(q^4)^2*eta(q^16)^4),

%F the McKay-Thompson series of class 16B for the Monster group (A029839).

%e G.f.: B_1(q) = 2*q + 16*q^3 + 96*q^5 + 448*q^7 + 1858*q^9 + 6896*q^11 + ...

%e Bisection B_0(q) of A162584 begins:

%e B_0(q) = 1 + 8*q^2 + 50*q^4 + 240*q^6 + 1024*q^8 + 3888*q^10 + ...

%t eta[q_]:= q^(1/24)*QPochhammer[q]; nmax =250; a[n_]:= SeriesCoefficient[ Series[Exp[Sum[DivisorSigma[1, k]*2^(IntegerExponent[k, 2] + 1)*q^k/k, {k, 1, nmax}]], {q, 0, nmax}], 2*n + 1]; Table[a[n], {n, 0, 50}] (* _G. C. Greubel_, Jul 03 2018 *)

%o (PARI) {a(n)=local(L=sum(m=1, 2*n+1, 2*sigma(m)*2^valuation(m, 2)*x^m/m)+O(x^(2*n+2))); polcoeff(exp(L), 2*n+1)}

%Y Cf. A162584, A163228 (B_0), A029839 (T16B).

%K nonn

%O 1,1

%A _Paul D. Hanna_, Jul 26 2009