login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A162889
Number of reduced words of length n in Coxeter group on 46 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.
1
1, 46, 2070, 92115, 4098600, 182342160, 8112199590, 360902223000, 16056115855560, 714317717862540, 31779155482826400, 1413817266133308960, 62899068010426041240, 2798305588240613272800, 124493325781573753947360
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170765, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
FORMULA
G.f.: (t^3 + 2*t^2 + 2*t + 1)/(990*t^3 - 44*t^2 - 44*t + 1).
From G. C. Greubel, Apr 28 2019: (Start)
a(n) = 44*a(n-1) + 44*a(n-2) - 990*a(n-3).
G.f.: (1+x)*(1-x^3)/(1 - 45*x + 1034*x^3 - 990*x^4). (End)
MATHEMATICA
CoefficientList[Series[(t^3+2*t^2+2*t+1)/(990*t^3-44*t^2-44*t+1), {t, 0, 20}], t] (* G. C. Greubel, Oct 24 2018 *)
coxG[{3, 990, -44}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 28 2019 *)
PROG
(PARI) my(t='t+O('t^20)); Vec((t^3+2*t^2+2*t+1)/(990*t^3-44*t^2-44*t+1)) \\ G. C. Greubel, Oct 24 2018
(Magma) R<t>:=PowerSeriesRing(Integers(), 20); Coefficients(R!((t^3 + 2*t^2+2*t+1)/(990*t^3-44*t^2-44*t+1))); // G. C. Greubel, Oct 24 2018
(Sage) ((1+x)*(1-x^3)/(1-45*x+1034*x^3-990*x^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 28 2019
(GAP) a:=[46, 2070, 92115];; for n in [4..20] do a[n]:=44*a[n-1]+44*a[n-2] - 990*a[n-3]; od; Concatenation([1], a); # G. C. Greubel, Apr 28 2019
CROSSREFS
Sequence in context: A331707 A223813 A324451 * A163232 A163802 A164331
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved