OFFSET
1,1
COMMENTS
Third binomial transform is A162560.
Equivalently, 3^n followed by -3^(n-1), n > 0. - Muniru A Asiru, Oct 25 2018
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (0,3).
FORMULA
a(n) = ((4-5*(-1)^n)*3^(1/4*(2*n-1+(-1)^n)))/3.
G.f.: x*(3-x)/(1-3*x^2). [corrected by Klaus Brockhaus, Sep 18 2009]
E.g.f.: (1 - cosh(sqrt(3)*x) + 3*sqrt(3)*sinh(sqrt(3)*x))/3. - G. C. Greubel, Oct 24 2018
MAPLE
seq(op([3^n, -3^(n-1)]), n=1..18); # Muniru A Asiru, Oct 25 2018
MATHEMATICA
Rest[CoefficientList[Series[x*(3-x)/(1-3*x^2), {x, 0, 40}], x]] (* or *) LinearRecurrence[{0, 3}, {3, -1}, 40] (* G. C. Greubel, Oct 24 2018 *)
PROG
(Magma) [ n le 2 select 7-4*n else 3*Self(n-2): n in [1..34] ];
(PARI) x='x+O('x^40); Vec(x*(3-x)/(1-3*x^2)) \\ G. C. Greubel, Oct 24 2018
(GAP) a:=[3, -1];; for n in [3..25] do a[n]:=3*a[n-2]; od; a; # Muniru A Asiru, Oct 25 2018
CROSSREFS
KEYWORD
sign
AUTHOR
Klaus Brockhaus, Jul 14 2009
STATUS
approved