login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162849
Pairs of numbers that add up to the 'backward decimal expansion' of fraction 1/109 and whose difference is the 'backward decimal expansion' of fraction 1/89.
5
0, 1, 10, 101, 2010, 10201, 303010, 1040201, 40703010, 107050201, 5140803010, 11112050201, 625200803010, 1162613050201, 74146210803010, 122513313050201, 8639754210803010, 12992793413050201, 993903355210803010
OFFSET
1,3
COMMENTS
Sum of pairs also (consecutive) cumulative sum of 110^n (or numerators of 1/110^1 + 1/110^2 + ... + 1/110^n, representing fraction 1/109).
Difference of pairs also cumulative sum of 90^n (or numerators of 1/90^1 + 1/90^2 + ... + 1/90^n, representing fraction 1/89).
FORMULA
For n even: a(n) = 100*a(n-2)+10*a(n-1), for n odd: a(n) = 100*a(n-2)+10*a(n-3)+1; with a(0)=0, a(1)=1.
From R. J. Mathar, Feb 11 2010: (Start)
a(n) = 201*a(n-2) - 10100*a(n-4) + 9900*a(n-6).
G.f.: x^2*(-1-10*x+100*x^2)/((x-1)*(1+x)*(90*x^2-1)*(110*x^2-1)). (End)
EXAMPLE
In pairs:
0, 1;
10, 101;
2010, 10201;
303010, 1040201;
40703010, 107050201;
5140803010, 11112050201;
CROSSREFS
KEYWORD
nonn,base,less
AUTHOR
Mark Dols, Jul 14 2009
EXTENSIONS
More terms from R. J. Mathar, Feb 11 2010
STATUS
approved