OFFSET
1,2
COMMENTS
T(n,k) = sum_{v=0..k} (-1)^v*v*binomial(k,v)*(v+1)^(n-1)
for n >= 1, k >= 1; by convention T(0,0) = 1.
Gives a representation of the Bernoulli numbers B_{n} = B_{n}(1) (with B_1 = 1/2)
B_{n} = sum_{j=0..n} sum_{k=0..j} T(j,k)/(k+1)
T(n,1) = -2^(n-1) (n>=1)
T(n,n) = (-1)^n*n! (n>=1)
sum_{k=0..n} T(n,k) = -A000007(n-1) = -1,0,0,0,0,... (n>=1)
sum_{k=0..n} T(n,k)/(k+1) = Bernoulli(n,1)-Bernoulli(n-1,1) (n>=1)
numer(sum(T(n,k)/(k+1),k=0..n)) = A051716(n) (n>=0)
denom(sum(T(n,k)/(k+1),k=0..n)) = A051717(n) (n>=0)
Contribution from Peter Luschny, Jul 08 2009: (Start)
More generally, define the polynomials (assume p[0,0](x)=1 and 0^0=1)
p[n,k](x) = sum_{v=0..k} (-1)^v*v*binomial(k,v)*(v+1+x)^(n-1)
[1], [0, -1], [0, -2-x, 2], [0, -4-4x-x^2, 10+4x, -6], ...
then T(n,k)=p[n,k](0) and (-1)^k*k!*Stirling2(n,k)=p[n,k](-1) (cf. A019538).
Assume now k >= 1 and read by rows. Then
p[n,k](1) = -1,-3,2,-9,14,-6,-27,74,-72,24,-81,350,-582,432,-120,...
(-1)^n*(-2)^(n-k)*p[n,k](-1/2))=1,3,2,9,16,6,27,98,90,24,81,544,924,576,120,..
(-1)^n*(-2)^(n-k)*p[n,k](-3/2))=1,1,2,1,8,6,1,26,54,24,1,80,348,384,120,... (End)
Variant of A199400.
LINKS
Vincenzo Librandi, Rows n = 1..50, flattened
FORMULA
From Peter Bala, Jul 21 2014: (Start)
T(n,k) = (-1)^k*k!*( Stirling2(n+1,k+1) - Stirling2(n,k+1) ), 1 <= k <= n.
T(n,k) = (-1)^k*(k + 1)*A038719(n+1,k+1).
E.g.f.: - B(-x,z)^2, where B(x,z) = 1/((1 + x)*exp(-z) - x) = 1 + (1 + x)*z + (1 + 3*x + 2*x^2)*z^2/2! + ... is an e.g.f. for A028246 (with an offset of 0).
Recurrence: T(n,k) = (k + 1)*T(n-1,k) - k*T(n-1,k-1).
Assuming this triangle is a signed version of A199400 then the n-th row polynomial R(n,x) = 1/(1 - x)*( sum {k = 1..inf} k*(k + 1)^(n-1)*(x/(x - 1))^k ), valid for x in the open interval (-inf, 1/2). (End)
EXAMPLE
For n >= 1, k >= 1:
..................... -1
................... -2, 2
................. -4, 10, -6
.............. -8, 38, -54, 24
......... -16, 130, -330, 336, -120
..... -32, 422, -1710, 3000, -2400, 720
-64, 1330, -8106, 21840, -29400, 19440, -5040
MAPLE
T := proc(n, k) local v; if n=0 and k=0 then 1 else
add((-1)^v*v*binomial(k, v)*(v+1)^(n-1), v=0..k) fi end:
# Peter Bala's e.g.f. assuming offset 0:
egf := (x, z) -> -((1-x)/exp(z) + x)^(-2):
ser := series(egf(x, z), z, 10): coz := n -> n!*coeff(ser, z, n):
row := n -> seq(coeff(coz(n), x, k), k = 0..n):
seq(print(row(n)), n = 0..9); # Peter Luschny, Jan 28 2021
MATHEMATICA
t[n_, k_] := Sum[(-1)^v*v*Binomial[k, v]*(v + 1)^(n - 1), {v, 0, k}]; Table[t[n, k], {n, 1, 8}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 26 2013, after Maple *)
PROG
(Sage)
def A162508(n, k):
if n==0 and k==0: return 1
return add((-1)^v*v*binomial(k, v)*(v+1)^(n-1) for v in (0..k))
for n in (1..8): [A162508(n, k) for k in (1..n)] # Peter Luschny, Jul 21 2014
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Jul 05 2009
EXTENSIONS
More terms from Philippe Deléham, Nov 05 2011
STATUS
approved