The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A162505 G.f. is the polynomial (1-x^3) * (1-x^6) * (1-x^9) * (1-x^12) / (1-x)^4. 0
 1, 4, 10, 19, 31, 46, 63, 81, 99, 116, 131, 143, 151, 154, 151, 143, 131, 116, 99, 81, 63, 46, 31, 19, 10, 4, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS This is a row of the triangle in A162499. Only finitely many terms are nonzero. LINKS FORMULA Euler transform of period 12 sequence [4, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1]. - Michael Somos, Aug 02 2018 MAPLE m:=4: seq(coeff(series(mul((1-x^(3*k)), k=1..m)/(1-x)^m, x, n+1), x, n), n=0..26); # Muniru A Asiru, Jul 07 2018 MATHEMATICA CoefficientList[ Series[Times @@ (1 - x^(3*Range@4))/(1 - x)^4, {x, 0, 40}], x] (* Harvey P. Dale, Feb 05 2012 and slightly modified by Robert G. Wilson v, Jul 23 2018 *) PROG (PARI) x='x+O('x^27); Vec((1-x^3)*(1-x^6)*(1-x^9)*(1-x^12)/(1-x)^4) \\ G. C. Greubel, Jul 06 2018 (MAGMA) m:=27; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x^3)*(1-x^6)*(1-x^9)*(1-x^12)/(1-x)^4)); // G. C. Greubel, Jul 06 2018 CROSSREFS Sequence in context: A301248 A160425 A152946 * A025720 A022793 A005448 Adjacent sequences:  A162502 A162503 A162504 * A162506 A162507 A162508 KEYWORD nonn,fini,full AUTHOR N. J. A. Sloane, Dec 02 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 7 11:46 EDT 2020. Contains 336276 sequences. (Running on oeis4.)