|
|
A161226
|
|
a(0)=0. a(n) = the smallest integer of the form k^j, j>=2, such that a(n) >= a(n-1) + n.
|
|
0
|
|
|
0, 1, 4, 8, 16, 25, 32, 49, 64, 81, 100, 121, 144, 169, 196, 216, 243, 289, 324, 343, 400, 441, 484, 512, 576, 625, 676, 729, 784, 841, 900, 961, 1000, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1728, 1849, 1936, 2025, 2116, 2187, 2304, 2401, 2500
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Table of n, a(n) for n=0..50.
|
|
MATHEMATICA
|
fQ[n_] := GCD @@ Last /@ FactorInteger@n > 1; f[n_] := f[n] = Block[{k = f[n - 1] + n}, While[ !fQ@k, k++ ]; k]; f[0] = 0; f[1] = 1; Table[ f@n, {n, 0, 50}] (* Robert G. Wilson v, Jun 09 2009 *)
|
|
PROG
|
(Magma) P:=[1] cat [ n: n in [2..2500] | IsPower(n) ]; S:=[0]; p:=1; n:=1; while p le #P do if P[p] ge (S[ #S]+n) then Append(~S, P[p]); n+:=1; end if; p+:=1; end while; S; // Klaus Brockhaus, Jun 10 2009
|
|
CROSSREFS
|
Cf. A001597.
Cf. A001597 (perfect powers: m^k where m is an integer and k >= 2). - Klaus Brockhaus, Jun 10 2009
Sequence in context: A337353 A330992 A246067 * A022560 A290190 A193452
Adjacent sequences: A161223 A161224 A161225 * A161227 A161228 A161229
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Leroy Quet, Jun 06 2009
|
|
EXTENSIONS
|
Extended by Ray Chandler, Klaus Brockhaus and Robert G. Wilson v, Jun 11 2009
|
|
STATUS
|
approved
|
|
|
|