Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Sep 08 2022 08:45:45
%S 0,1,4,8,16,25,32,49,64,81,100,121,144,169,196,216,243,289,324,343,
%T 400,441,484,512,576,625,676,729,784,841,900,961,1000,1089,1156,1225,
%U 1296,1369,1444,1521,1600,1681,1728,1849,1936,2025,2116,2187,2304,2401,2500
%N a(0)=0. a(n) = the smallest integer of the form k^j, j>=2, such that a(n) >= a(n-1) + n.
%t fQ[n_] := GCD @@ Last /@ FactorInteger@n > 1; f[n_] := f[n] = Block[{k = f[n - 1] + n}, While[ !fQ@k, k++ ]; k]; f[0] = 0; f[1] = 1; Table[ f@n, {n, 0, 50}] (* _Robert G. Wilson v_, Jun 09 2009 *)
%o (Magma) P:=[1] cat [ n: n in [2..2500] | IsPower(n) ]; S:=[0]; p:=1; n:=1; while p le #P do if P[p] ge (S[ #S]+n) then Append(~S, P[p]); n+:=1; end if; p+:=1; end while; S; // _Klaus Brockhaus_, Jun 10 2009
%Y Cf. A001597.
%Y Cf. A001597 (perfect powers: m^k where m is an integer and k >= 2). - _Klaus Brockhaus_, Jun 10 2009
%K nonn
%O 0,3
%A _Leroy Quet_, Jun 06 2009
%E Extended by _Ray Chandler_, _Klaus Brockhaus_ and _Robert G. Wilson v_, Jun 11 2009