login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A161224
Triangular table a(n,m) that counts the occurrences of m in all partitions of 2n in exactly n parts.
2
0, 0, 1, 1, 2, 1, 3, 4, 1, 1, 8, 7, 3, 1, 1, 15, 12, 4, 2, 1, 1, 31, 19, 8, 4, 2, 1, 1, 51, 30, 11, 6, 3, 2, 1, 1, 90, 45, 19, 9, 6, 3, 2, 1, 1, 142, 67, 26, 15, 8, 5, 3, 2, 1, 1, 228, 97, 41, 21, 13, 8, 5, 3, 2, 1, 1, 341, 139, 56, 31, 18, 12, 7, 5, 3, 2, 1, 1, 525, 195, 83, 45, 28, 17, 12, 7, 5, 3, 2, 1, 1
OFFSET
0,5
COMMENTS
Row sums are A066186, or n*p(n) with p(n) = A000041 = the partitions of n. The rows reversed converge to 1,1,2,3,5,7,11,15,... or p(n). The count of partitions of 2n in exactly n parts equals p(n).
It appears the row n lists A196087(n) together with the row n of triangle A066633. - Omar E. Pol, Feb 26 2012
LINKS
Eric Weisstein's World of Mathematics, Elder's Theorem
EXAMPLE
Table starts:
0;
0, 1;
1, 2, 1;
3, 4, 1, 1;
8, 7, 3, 1, 1;
since the strict partitions of
(2 in 1 part) is {2} with 0 "1" and 1 "2"
(4 in 2 parts) is {2,2}, {3,1} with1 "1", 2 "2" and 1 "3"
(6 in 3 parts) is {2,2,2}, {3,2,1}, {4,1,1} with 3 "1", 4 "2", 1 "3" and 1 "4"
MAPLE
b:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0),
`if`(i=1, `if`(t=n, 1+t*x, 0), expand(add((p->p+coeff(
p, x, 0)*j*x^i)(b(n-i*j, i-1, t-j)), j=0..min(t, n/i)))))
end:
a:= n->(p->seq(coeff(p, x, i), i=1..n+1))(b(2*n$2, n)):
seq(a(n), n=0..12); # Alois P. Heinz, Feb 11 2014
MATHEMATICA
<<Combinatorica`; partitionexact[n_, m_]:= TransposePartition /@ (Prepend[ #, m]& /@ Partitions[n-m, m]); Table[If[n==0, {0}, CoefficientList[ Apply[ Plus, x^#& /@ partitionexact[2n, n], {0, 1}]/x, x]], {n, 0, 24}]
(* second program: *)
b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t == 0, 1, 0], If[i == 1, If[t == n, 1+t*x, 0], Expand[Sum[Function[p, p + Coefficient[p, x, 0]*j*x^i][ b[n-i*j, i-1, t-j]], {j, 0, Min[t, n/i]}]]]];
a[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, n+1}]][b[2n, 2n, n] ];
Table[a[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, May 24 2016, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A244891 A322081 A279396 * A147567 A247045 A347354
KEYWORD
nonn,tabl
AUTHOR
Wouter Meeussen, Jun 06 2009
EXTENSIONS
Row 0 inserted and tabf changed to tabl by Alois P. Heinz, Feb 11 2014
STATUS
approved