login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244891
Class number of maximal order O_1 in a totally definite quaternion Q(sqrt(p))-algebra D_{oo_1, oo_2}, where p = n-th prime.
0
1, 2, 1, 3, 4, 1, 1, 6, 7, 2, 9, 2, 2, 12, 13, 3, 16, 3, 18, 19, 3, 69, 22, 4, 4, 5, 31, 28, 5, 5, 39, 38, 6, 44, 7, 49, 7, 50, 47, 8, 54, 8, 61, 10, 9, 71, 74, 231, 66, 30, 12, 79, 14, 84, 39, 85, 12, 105, 14, 16, 104, 13, 114, 111, 19, 14, 136, 22, 116, 17, 19, 405, 151, 20, 164, 133
OFFSET
1,2
LINKS
J. Xue, T.-C. Yang, C.-F. Yu, Supersingular abelian surfaces and Eichler class number formula, arXiv preprint arXiv:1404.2978, 2014. See Table 1.
PROG
(Sage)
def a(n):
if n < 4: return [1, 2, 1][n-1]
p = Primes()[n-1]
F = NumberField(x^2 - p, names='a')
hKi = [F.extension(x^2+i+1, names='b').class_number() for i in range(3)]
ans = F.class_number()*F.zeta_function(100)(-1)/2 + hKi[2]/3
if p%4 == 1: ans += hKi[0]/4
else: ans += (3 + 5*(2 - legendre_symbol(2, p)))*hKi[0]/8 + hKi[1]/4
return round(ans.real_part()) # Robin Visser, Feb 23 2024
CROSSREFS
Sequence in context: A160188 A332864 A337569 * A322081 A279396 A161224
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 13 2014
EXTENSIONS
More terms from Robin Visser, Feb 23 2024
STATUS
approved