login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A161026
Number of partitions of n into Fibonacci numbers where every part appears at least 2 times.
1
1, 0, 1, 1, 2, 1, 4, 2, 5, 5, 8, 6, 12, 10, 15, 16, 22, 20, 30, 30, 38, 40, 51, 51, 67, 69, 84, 88, 108, 111, 136, 141, 168, 176, 209, 218, 256, 267, 310, 328, 376, 396, 454, 477, 541, 575, 644, 681, 767, 809, 902, 959, 1061, 1121, 1246, 1316, 1448, 1537, 1687, 1781, 1956
OFFSET
0,5
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000 (terms n=1..1000 from R. H. Hardin)
FORMULA
G.f.: Product(1+x^(2*F(j))/(1-x^(F(j))), j=2..infinity), where F = A000045 are the Fibonacci numbers. - Emeric Deutsch, Jun 24 2009
EXAMPLE
a(9) = 5 because we have 333, 33111, 222111, 2211111, and 1^9. - Emeric Deutsch, Jun 24 2009
MAPLE
with(combinat); g := product(1+x^(2*fibonacci(j))/(1-x^fibonacci(j)), j = 2 .. 10): gser := series(g, x = 0, 95): seq(coeff(gser, x, n), n = 0 .. 65); # Emeric Deutsch, Jun 24 2009
# second Maple program:
F:= proc(n) option remember; (<<0|1>, <1|1>>^n)[1, 2] end:
b:= proc(n, i) option remember; `if`(n=0, 1, (f-> `if`(2*f<=n,
add(b(n-j*f, i+1), j=[0, $2..n/f]), 0))(F(i)))
end:
a:= n-> b(n, 2):
seq(a(n), n=0..80); # Alois P. Heinz, Feb 23 2019
MATHEMATICA
F[n_] := F[n] = MatrixPower[{{0, 1}, {1, 1}}, n][[1, 2]];
b[n_, i_] := b[n, i] = If[n == 0, 1, With[{f = F[i]}, If[2*f <= n,
Sum[b[n - j*f, i + 1], {j, Join[{0}, Range[2, n/f]]}], 0]]];
a[n_] := b[n, 2];
Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Apr 26 2022, after Alois P. Heinz *)
CROSSREFS
Cf. A000045.
Sequence in context: A128861 A161307 A161241 * A161077 A339220 A161293
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jun 02 2009
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Feb 23 2019
STATUS
approved