login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A161077
Number of partitions of n into primes or 1 where every part appears at least 2 times.
6
0, 1, 1, 2, 1, 4, 2, 5, 5, 8, 6, 12, 10, 16, 16, 22, 21, 31, 30, 40, 42, 53, 55, 71, 73, 90, 96, 116, 123, 149, 157, 186, 200, 234, 250, 292, 312, 360, 388, 443, 476, 543, 584, 660, 712, 800, 862, 967, 1041, 1160, 1252, 1390, 1497, 1659, 1786, 1970, 2124, 2336, 2513, 2760
OFFSET
1,4
LINKS
FORMULA
G.f.: -1+(1+x^2/(1-x))*Product_{j>=1} ( 1+x^(2*p(j))/(1-x^(p(j))) ), where p(j) is the j-th prime. - Emeric Deutsch, Jun 27 2009
EXAMPLE
a(8)=5 because we have 3311, 2222, 22211, 221111, and 1^8. - Emeric Deutsch, Jun 27 2009
MAPLE
g := -1+(1+x^2/(1-x))*(product(1+x^(2*ithprime(j))/(1-x^ithprime(j)), j = 1 .. 20)): gser := series(g, x = 0, 70): seq(coeff(gser, x, n), n = 1 .. 60); # Emeric Deutsch, Jun 27 2009
MATHEMATICA
nmax = 100; Rest[CoefficientList[Series[-1 + (1 + x^2/(1-x)) * Product[1 + x^(2*Prime[k]) / (1 - x^Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Nov 28 2020 *)
CROSSREFS
Sequence in context: A161307 A161241 A161026 * A339220 A161293 A328163
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jun 02 2009
EXTENSIONS
Definition edited to "primes or 1" by R. H. Hardin, Jun 22 2009
STATUS
approved