The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A161027 Number of partitions of n into Fibonacci numbers where every part appears at least 3 times. 1
 1, 0, 0, 1, 1, 1, 2, 1, 2, 3, 3, 3, 6, 5, 6, 10, 8, 9, 14, 13, 16, 20, 19, 23, 30, 30, 33, 41, 43, 48, 59, 58, 67, 78, 81, 92, 105, 109, 123, 140, 148, 160, 182, 193, 214, 238, 249, 275, 305, 322, 353, 386, 413, 447, 490, 520, 561, 611, 650, 701, 762, 804, 868, 938, 997, 1067, 1147 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,7 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..10000 (terms n = 1..1000 from R. H. Hardin) FORMULA G.f.: Product_{j>=2} (1 + x^(3*F(j))/(1 - x^(F(j)))), where F = A000045 are the Fibonacci numbers. - Emeric Deutsch, Jun 23 2009 EXAMPLE a(10) = 3 because we have 22222, 2221111, and 1^(10). - Emeric Deutsch, Jun 23 2009 MAPLE with(combinat): g := product(1+x^(3*fibonacci(j))/(1-x^fibonacci(j)), j = 2 .. 10): gser := series(g, x = 0, 95): seq(coeff(gser, x, n), n = 0 .. 71); # Emeric Deutsch, Jun 23 2009 # second Maple program: F:= proc(n, i) option remember; (<<0|1>, <1|1>>^n)[1, 2] end: b:= proc(n, i) option remember; `if`(n=0, 1, (f-> `if`(3*f<=n,       add(b(n-j*f, i+1), j=[0, \$3..n/f]), 0))(F(i)))     end: a:= n-> b(n, 2): seq(a(n), n=0..80);  # Alois P. Heinz, Feb 23 2019 CROSSREFS Cf. A000045. Sequence in context: A306878 A161308 A161242 * A161078 A161294 A161269 Adjacent sequences:  A161024 A161025 A161026 * A161028 A161029 A161030 KEYWORD nonn AUTHOR R. H. Hardin, Jun 02 2009 EXTENSIONS a(0)=1 prepended by Alois P. Heinz, Feb 23 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 20 03:25 EST 2022. Contains 350467 sequences. (Running on oeis4.)