Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Sep 03 2022 21:00:37
%S 1,0,1,1,2,1,4,2,5,5,8,6,12,10,15,16,22,20,30,30,38,40,51,51,67,69,84,
%T 88,108,111,136,141,168,176,209,218,256,267,310,328,376,396,454,477,
%U 541,575,644,681,767,809,902,959,1061,1121,1246,1316,1448,1537,1687,1781,1956
%N Number of partitions of n into Fibonacci numbers where every part appears at least 2 times.
%H Alois P. Heinz, <a href="/A161026/b161026.txt">Table of n, a(n) for n = 0..10000</a> (terms n=1..1000 from R. H. Hardin)
%F G.f.: Product(1+x^(2*F(j))/(1-x^(F(j))), j=2..infinity), where F = A000045 are the Fibonacci numbers. - _Emeric Deutsch_, Jun 24 2009
%e a(9) = 5 because we have 333, 33111, 222111, 2211111, and 1^9. - _Emeric Deutsch_, Jun 24 2009
%p with(combinat); g := product(1+x^(2*fibonacci(j))/(1-x^fibonacci(j)), j = 2 .. 10): gser := series(g, x = 0, 95): seq(coeff(gser, x, n), n = 0 .. 65); # _Emeric Deutsch_, Jun 24 2009
%p # second Maple program:
%p F:= proc(n) option remember; (<<0|1>, <1|1>>^n)[1, 2] end:
%p b:= proc(n, i) option remember; `if`(n=0, 1, (f-> `if`(2*f<=n,
%p add(b(n-j*f, i+1), j=[0, $2..n/f]), 0))(F(i)))
%p end:
%p a:= n-> b(n, 2):
%p seq(a(n), n=0..80); # _Alois P. Heinz_, Feb 23 2019
%t F[n_] := F[n] = MatrixPower[{{0, 1}, {1, 1}}, n][[1, 2]];
%t b[n_, i_] := b[n, i] = If[n == 0, 1, With[{f = F[i]}, If[2*f <= n,
%t Sum[b[n - j*f, i + 1], {j, Join[{0}, Range[2, n/f]]}], 0]]];
%t a[n_] := b[n, 2];
%t Table[a[n], {n, 0, 80}] (* _Jean-François Alcover_, Apr 26 2022, after _Alois P. Heinz_ *)
%Y Cf. A000045.
%K nonn
%O 0,5
%A _R. H. Hardin_, Jun 02 2009
%E a(0)=1 prepended by _Alois P. Heinz_, Feb 23 2019