login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A160805 a(n) = (2*n^3 + 9*n^2 + n + 24) / 6. 3
4, 6, 13, 27, 50, 84, 131, 193, 272, 370, 489, 631, 798, 992, 1215, 1469, 1756, 2078, 2437, 2835, 3274, 3756, 4283, 4857, 5480, 6154, 6881, 7663, 8502, 9400, 10359, 11381, 12468, 13622, 14845, 16139, 17506, 18948, 20467, 22065, 23744, 25506, 27353, 29287 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Arithmetic progression of third order; a(n+1)-a(n) = A008865(n+2);

a(n) = A101986(n) + 4.

REFERENCES

R. Courant, Differential and Integral Calculus Vol. I (Blackie&Son, 1937), ch. I.4, Example 5, p.29.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).

FORMULA

a(n) = (2*n^3 + 9*n^2 + n + 24) / 6.

From Wesley Ivan Hurt, Aug 29 2015: (Start)

G.f.: (4-10*x+13*x^2-5*x^3)/(x-1)^4.

a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4), n>3. (End)

MAPLE

A160805:=n->(2*n^3+9*n^2+n+24)/6: seq(A160805(n), n=0..80); # Wesley Ivan Hurt, Aug 29 2015

MATHEMATICA

Table[(2 n^3 + 9 n^2 + n + 24)/6, {n, 0, 60}]

CoefficientList[Series[(4 - 10*x + 13*x^2 - 5*x^3)/(x - 1)^4, {x, 0, 60}], x] (* Wesley Ivan Hurt, Aug 29 2015 *)

PROG

(MAGMA) [(2*n^3+9*n^2+n+24)/6: n in [0..50]]; // Vincenzo Librandi, Dec 27 2010

(PARI) first(m)=vector(m, i, i--; (2*i^3 + 9*i^2 + i + 24) / 6) \\ Anders Hellström, Aug 29 2015

CROSSREFS

Cf. A008865, A101986.

Sequence in context: A136391 A105205 A302311 * A246424 A012776 A240198

Adjacent sequences:  A160802 A160803 A160804 * A160806 A160807 A160808

KEYWORD

nonn,easy

AUTHOR

Reinhard Zumkeller, May 26 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 14 18:13 EDT 2022. Contains 356122 sequences. (Running on oeis4.)