login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160805
a(n) = (2*n^3 + 9*n^2 + n + 24) / 6.
3
4, 6, 13, 27, 50, 84, 131, 193, 272, 370, 489, 631, 798, 992, 1215, 1469, 1756, 2078, 2437, 2835, 3274, 3756, 4283, 4857, 5480, 6154, 6881, 7663, 8502, 9400, 10359, 11381, 12468, 13622, 14845, 16139, 17506, 18948, 20467, 22065, 23744, 25506, 27353, 29287
OFFSET
0,1
COMMENTS
Arithmetic progression of third order; a(n+1)-a(n) = A008865(n+2);
a(n) = A101986(n) + 4.
REFERENCES
R. Courant, Differential and Integral Calculus Vol. I (Blackie&Son, 1937), ch. I.4, Example 5, p.29.
FORMULA
a(n) = (2*n^3 + 9*n^2 + n + 24) / 6.
From Wesley Ivan Hurt, Aug 29 2015: (Start)
G.f.: (4-10*x+13*x^2-5*x^3)/(x-1)^4.
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4), n>3. (End)
MAPLE
A160805:=n->(2*n^3+9*n^2+n+24)/6: seq(A160805(n), n=0..80); # Wesley Ivan Hurt, Aug 29 2015
MATHEMATICA
Table[(2 n^3 + 9 n^2 + n + 24)/6, {n, 0, 60}]
CoefficientList[Series[(4 - 10*x + 13*x^2 - 5*x^3)/(x - 1)^4, {x, 0, 60}], x] (* Wesley Ivan Hurt, Aug 29 2015 *)
PROG
(Magma) [(2*n^3+9*n^2+n+24)/6: n in [0..50]]; // Vincenzo Librandi, Dec 27 2010
(PARI) first(m)=vector(m, i, i--; (2*i^3 + 9*i^2 + i + 24) / 6) \\ Anders Hellström, Aug 29 2015
CROSSREFS
Sequence in context: A136391 A105205 A302311 * A359020 A246424 A012776
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, May 26 2009
STATUS
approved