login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A105205 G.f.: Sum((1-x)^(2*l)*Sum(x^((2*l-1)*k)/(1-2*x+x^k)^(2*l),k=1..infinity),l=1..infinity). 0
1, 1, 4, 6, 13, 24, 51, 101, 205, 407, 814, 1624, 3248, 6490, 12979, 25950, 51898, 103798, 207619, 415288, 830690, 1661590, 3323566, 6647779, 13296602, 26594769, 53191708, 106386020, 212774300, 425548246, 851088094, 1702147791, 3404222451 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

LINKS

Table of n, a(n) for n=1..33.

FORMULA

Number of compositions of n such that the greatest part occurs with odd multiplicity.

EXAMPLE

a(4)=6 because we have (4),(3,1),(1,3),(2,1,1),(1,2,1) and (1,1,2).

MAPLE

G:=sum((1-x)^(2*l)*sum(x^((2*l-1)*k)/(1-2*x+x^k)^(2*l), k=1..30), l=1..20): Gser:=series(G, x=0, 35): seq(coeff(Gser, x^n), n=1..33); # Emeric Deutsch, Jun 07 2005

CROSSREFS

Cf. A105201, A105200.

Sequence in context: A049732 A262194 A136391 * A302311 A160805 A246424

Adjacent sequences:  A105202 A105203 A105204 * A105206 A105207 A105208

KEYWORD

easy,nonn

AUTHOR

Vladeta Jovovic, Apr 12 2005

EXTENSIONS

More terms from Emeric Deutsch, Jun 07 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 1 00:05 EDT 2022. Contains 354947 sequences. (Running on oeis4.)