OFFSET
0,2
COMMENTS
Source: the De Loera et al. article and the Haws website listed in A160747.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
G.f.: (1+13*x+32*x^2+13*x^3+x^4)/(1-x)^5.
a(n) = (n^2+n+1)*(5*n^2+5*n+2)/2. - R. J. Mathar, Sep 11 2011
E.g.f.: (1/2)*(5*x^4 + 40*x^3 + 77*x^2 + 34*x + 2)*exp(x). - G. C. Greubel, Apr 26 2018
MATHEMATICA
Table[(n^2 + n + 1) (5 n^2 + 5 n + 2)/2, {n, 0, 40}] (* Bruno Berselli, Jul 31 2015 *)
PROG
(Sage) [(n^2+n+1)*(5*n^2+5*n+2)/2 for n in (0..40)] # Bruno Berselli, Jul 31 2015
(Magma) [(n^2+n+1)*(5*n^2+5*n+2)/2: n in [0..40]] // Bruno Berselli, Jul 31 2015
(PARI) for(n=0, 30, print1((n^2+n+1)*(5*n^2+5*n+2)/2, ", ")) \\ G. C. Greubel, Apr 26 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 18 2009
STATUS
approved