OFFSET
0,2
COMMENTS
Source: the De Loera et al. article and the Haws website listed in A160747.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
G.f.: (1+12*x+28*x^2+12*x^3+x^4)/(1-x)^5.
a(n) = 9*n^4/4 +9*n^3/2 +23*n^2/4 +7*n/2 +1. - R. J. Mathar, Sep 11 2011
a(0)=1, a(1)=17, a(2)=103, a(3)=367, a(4)=971, a(n)=5*a(n-1)- 10*a(n-2)+ 10*a(n-3)-5*a(n-4)+a(n-5). - Harvey P. Dale, Feb 28 2015
E.g.f.: (4 + 64*x + 140*x^2 + 72*x^3 + 9*x^4)*exp(x)/4. - G. C. Greubel, Apr 26 2018
MATHEMATICA
CoefficientList[Series[(1+12x+28x^2+12x^3+x^4)/(1-x)^5, {x, 0, 40}], x] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {1, 17, 103, 367, 971}, 40] (* Harvey P. Dale, Dec 11 2014 *)
PROG
(PARI) for(n=0, 30, print1((9*n^4 +18*n^3 +23*n^2 +14*n +4)/4, ", ")) \\ G. C. Greubel, Apr 26 2018
(Magma) [(9*n^4 +18*n^3 +23*n^2 +14*n +4)/4: n in [0..30]]; // G. C. Greubel, Apr 26 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 18 2009
STATUS
approved