login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160739
16*P_6(n), 16 times the Legendre Polynomial of order 6 at n.
6
-5, 16, 10159, 143824, 867211, 3415120, 10373071, 26425744, 59271739, 120704656, 227860495, 404631376, 683245579, 1106013904, 1727242351, 2615311120, 3854919931, 5549499664, 7823790319, 10826585296, 14733641995, 19750758736, 26117017999
OFFSET
0,1
FORMULA
a(n) = 231*n^6 - 315*n^4 + 105*n^2 - 5. - Vaclav Kotesovec, Jul 31 2013
From Colin Barker, Jul 23 2019: (Start)
G.f.: -(5 - 51*x - 9942*x^2 - 73222*x^3 - 73047*x^4 - 10047*x^5 - 16*x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>6.
(End)
MAPLE
A160739 := proc(n)
16*orthopoly[P](6, n) ;
end proc: # R. J. Mathar, Oct 24 2011
MATHEMATICA
Table[16 LegendreP[6, n], {n, 0, 40}]
PROG
(PARI) a(n)=16*pollegendre(6, n) \\ Charles R Greathouse IV, Mar 18 2017
(PARI) Vec(-(5 - 51*x - 9942*x^2 - 73222*x^3 - 73047*x^4 - 10047*x^5 - 16*x^6) / (1 - x)^7 + O(x^30)) \\ Colin Barker, Jul 23 2019
(Magma) [231*n^6 -315*n^4 +105*n^2 -5: n in [0..30]]; // G. C. Greubel, May 02 2018
CROSSREFS
Sequence in context: A317460 A341436 A263906 * A092679 A277534 A090592
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Nov 17 2009
STATUS
approved