login
A341436
Numbers k such that k divides Sum_{j=1..k} j^(k+1-j).
1
1, 5, 16, 208, 688, 784, 2864, 9555, 17776, 81239
OFFSET
1,2
COMMENTS
Numbers k such that k divides A003101(k).
a(11) > 10^5.
EXAMPLE
1^5 + 2^4 + 3^3 + 4^2 + 5^1 = 65 = 5 * 13. So 5 is a term.
MATHEMATICA
Do[If[Mod[Sum[PowerMod[k, n + 1 - k, n], {k, 1, n}], n] == 0, Print[n]], {n, 1, 3000}] (* Vaclav Kotesovec, Feb 12 2021 *)
PROG
(PARI) isok(n) = sum(k=1, n, Mod(k, n)^(n+1-k))==0;
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Seiichi Manyama, Feb 11 2021
STATUS
approved