login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160243
a(n) = Lucas(n+1) + prime(n).
2
5, 7, 12, 18, 29, 42, 64, 95, 146, 228, 353, 558, 884, 1407, 2254, 3624, 5837, 9410, 15194, 24547, 39676, 64158, 103765, 167850, 271540, 439305, 710750, 1149958, 1860607, 3010462, 4870974, 7881327, 12752180, 20633378, 33385431, 54018672, 87403960, 141422487
OFFSET
1,1
COMMENTS
Lucas(n) = A000032(n), prime(n) = A000040(n).
LINKS
EXAMPLE
a(1) = Lucas(2) + prime(1) = 3 + 2 = 5.
a(4) = Lucas(5) + prime(4) = 11 + 7 = 18.
MATHEMATICA
Table[LucasL[n+1]+Prime[n], {n, 40}] (* Harvey P. Dale, May 25 2021 *)
PROG
(UBASIC) 10 'Lucas variations (change value of A in line 30 as appropriate) 20 P=1 30 A=2 40 B=1 50 C=A+B:print C; :R=nxtprm(P):print R; :P=R:print C+R 51 if C=prmdiv(C) then print C; "*":U=U+1 52 if C+R=prmdiv(C+R) then print C+R; "#":V=V+1 60 D=B+C:print D; :R=nxtprm(P):print R; :P=R:print D+R 61 if D=prmdiv(D) then print D; "*":U=U+1 62 if D+R=prmdiv(D+R) then print D+R; "#":V=V+1 63 print U; V 70 stop 80 A=C:B=D:goto 50
(Magma) [ Lucas(n+1)+NthPrime(n): n in [1..40] ]; // Klaus Brockhaus, May 20 2009
CROSSREFS
A000032 (Lucas numbers, beginning at 2), A000040 (primes), A096362 (order in which prime factors first occur in the Lucas sequence), A160244 (A000285(n) + A000040(n)).
Sequence in context: A031144 A314312 A373670 * A373669 A247027 A020686
KEYWORD
easy,nonn
AUTHOR
Enoch Haga, May 05 2009
EXTENSIONS
Edited by Klaus Brockhaus, May 20 2009
Corrected and extended by Harvey P. Dale, May 25 2021
STATUS
approved