login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Lucas(n+1) + prime(n).
2

%I #13 Sep 08 2022 08:45:45

%S 5,7,12,18,29,42,64,95,146,228,353,558,884,1407,2254,3624,5837,9410,

%T 15194,24547,39676,64158,103765,167850,271540,439305,710750,1149958,

%U 1860607,3010462,4870974,7881327,12752180,20633378,33385431,54018672,87403960,141422487

%N a(n) = Lucas(n+1) + prime(n).

%C Lucas(n) = A000032(n), prime(n) = A000040(n).

%H Harvey P. Dale, <a href="/A160243/b160243.txt">Table of n, a(n) for n = 1..1000</a>

%e a(1) = Lucas(2) + prime(1) = 3 + 2 = 5.

%e a(4) = Lucas(5) + prime(4) = 11 + 7 = 18.

%t Table[LucasL[n+1]+Prime[n],{n,40}] (* _Harvey P. Dale_, May 25 2021 *)

%o (UBASIC) 10 'Lucas variations (change value of A in line 30 as appropriate) 20 P=1 30 A=2 40 B=1 50 C=A+B:print C;:R=nxtprm(P):print R;:P=R:print C+R 51 if C=prmdiv(C) then print C;"*":U=U+1 52 if C+R=prmdiv(C+R) then print C+R;"#":V=V+1 60 D=B+C:print D;:R=nxtprm(P):print R;:P=R:print D+R 61 if D=prmdiv(D) then print D;"*":U=U+1 62 if D+R=prmdiv(D+R) then print D+R;"#":V=V+1 63 print U;V 70 stop 80 A=C:B=D:goto 50

%o (Magma) [ Lucas(n+1)+NthPrime(n): n in [1..40] ]; // _Klaus Brockhaus_, May 20 2009

%Y A000032 (Lucas numbers, beginning at 2), A000040 (primes), A096362 (order in which prime factors first occur in the Lucas sequence), A160244 (A000285(n) + A000040(n)).

%K easy,nonn

%O 1,1

%A _Enoch Haga_, May 05 2009

%E Edited by _Klaus Brockhaus_, May 20 2009

%E Corrected and extended by _Harvey P. Dale_, May 25 2021