login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160239
Number of "ON" cells in a 2-dimensional cellular automaton ("Fredkin's Replicator") evolving according to the rule that a cell is ON in a given generation if and only if there was an odd number of ON cells among the eight nearest neighbors in the preceding generation, starting with one ON cell.
33
1, 8, 8, 24, 8, 64, 24, 112, 8, 64, 64, 192, 24, 192, 112, 416, 8, 64, 64, 192, 64, 512, 192, 896, 24, 192, 192, 576, 112, 896, 416, 1728, 8, 64, 64, 192, 64, 512, 192, 896, 64, 512, 512, 1536, 192, 1536, 896, 3328, 24, 192, 192, 576, 192, 1536, 576, 2688, 112, 896, 896, 2688, 416, 3328, 1728, 6784
OFFSET
0,2
COMMENTS
This is the odd-rule cellular automaton defined by OddRule 757 (see Ekhad-Sloane-Zeilberger "Odd-Rule Cellular Automata on the Square Grid" link). - N. J. A. Sloane, Feb 25 2015
The partial sums are in A245542, in which the structure also looks like an irregular stepped pyramid. - Omar E. Pol, Jan 29 2015
LINKS
Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata, arXiv:1503.01796 [math.CO], 2015; see also the Accompanying Maple Package.
Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, Odd-Rule Cellular Automata on the Square Grid, arXiv:1503.04249 [math.CO], 2015.
N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb. 05 2015: Part 1, Part 2
Alexander Yu. Vlasov, Modelling reliability of reversible circuits with 2D second-order cellular automata, arXiv:2312.13034 [nlin.CG], 2023. See page 13.
FORMULA
a(0) = 1; a(2t)=a(t), a(4t+1)=8*a(t), a(4t+3)=2*a(2t+1)+8*a(t) for t >= 0. (Conjectured by Hrothgar, Jul 11 2014; proved by N. J. A. Sloane, Oct 04 2014.)
For n >= 2, a(n) = 8^r * Product_{lengths i of runs of 1 in binary expansion of n} R(i), where r is the number of runs of 1 in the binary expansion of n and R(i) = A083424(i-1) = (5*4^(i-1)+(-2)^(i-1))/6. Note that row i of the table in A245562 lists the lengths of runs of 1 in binary expansion of i. Example: n=7 = 111 in binary, so r=1, i=3, R(3) = A083424(2) = 14, and so a(7) = 8^1*14 = 112. That is, this sequence is the Run Length Transform of A246030. - N. J. A. Sloane, Oct 04 2014
The Run Length Transform of a sequence {S(n), n>=0} is defined to be the sequence {T(n), n>=0} given by T(n) = Product_i S(i), where i runs through the lengths of runs of 1's in the binary expansion of n. E.g. 19 is 10011 in binary, which has two runs of 1's, of lengths 1 and 2. So T(19) = S(1)*S(2). T(0)=1 (the empty product). - N. J. A. Sloane, Aug 25 2014
EXAMPLE
From Omar E. Pol, Jul 22 2014 (Start):
Written as an irregular triangle in which row lengths is A011782 the sequence begins:
1;
8;
8, 24;
8, 64, 24, 112;
8, 64, 64, 192, 24, 192, 112, 416;
8, 64, 64, 192, 64, 512, 192, 896, 24, 192, 192, 576, 112, 896, 416, 1728;
8, 64, 64, 192, 64, 512, 192, 896, 64, 512, 512, 1536, 192, 1536, 896, 3328, 24, 192, 192, 576, 192, 1536, 576, 2688, 112, 896, 896, 2688, 416, 3328, 1728, 6784;
(End)
Right border gives A246030. - Omar E. Pol, Jan 29 2015 [This is simply a restatement of the theorem that this sequence is the Run Length Transform of A246030. - N. J. A. Sloane, Jan 29 2015]
.
From Omar E. Pol, Mar 18 2015 (Start):
Also, the sequence can be written as an irregular tetrahedron as shown below:
1;
..
8;
..
8;
24;
.........
8, 64;
24;
112;
...................
8, 64, 64, 192;
24, 192;
112;
416;
.....................................
8, 64, 64, 192, 64, 512,192, 896;
24, 192, 192, 576;
112, 896;
416;
1728;
.......................................................................
8, 64, 64, 192, 64, 512,192, 896,64,512,512,1536,192,1536,896,3328;
24, 192, 192, 576,192,1536,576,2688;
112, 896, 896,2688;
416,3328;
1728;
6784;
...
Apart from the initial 1, we have that T(s,r,k) = T(s+1,r,k). On the other hand, it appears that the configuration of ON cells of T(s,r,k) is also the central part of the configuration of ON cells of T(s+1,r+1,k).
(End)
MAPLE
# From N. J. A. Sloane, Jan 19 2015:
f:=proc(n) option remember;
if n=0 then RETURN(1);
elif n mod 2 = 0 then RETURN(f(n/2))
elif n mod 4 = 1 then RETURN(8*f((n-1)/4))
else RETURN(f(n-2)+2*f((n-1)/2)); fi;
end;
[seq(f(n), n=0..255)];
MATHEMATICA
A160239[n_] :=
CellularAutomaton[{52428, {2, {{2, 2, 2}, {2, 1, 2}, {2, 2, 2}}}, {1, 1}}, {{{1}}, 0}, {{n}}][[1]] // Total@*Total (* Charles R Greathouse IV, Aug 21 2014 *)
ArrayPlot /@ CellularAutomaton[{52428, {2, {{2, 2, 2}, {2, 1, 2}, {2, 2, 2}}}, {1, 1}}, {{{1}}, 0}, 30] (* Charles R Greathouse IV, Aug 21 2014 *)
PROG
(Haskell)
import Data.List (transpose)
a160239 n = a160239_list !! n
a160239_list = 1 : (concat $
transpose [a8, hs, zipWith (+) (map (* 2) hs) a8, tail a160239_list])
where a8 = map (* 8) a160239_list;
hs = h a160239_list; h (_:x:xs) = x : h xs
-- Reinhard Zumkeller, Feb 13 2015
(PARI) A160239=[]; a(n)={if(n>#A160239, A160239=concat(A160239, vector(n-#A160239)), n||return(1); A160239[n]&&return(A160239[n])); A160239[n]=if(bittest(n, 0), if(bittest(n, 1), a(n-2)+2*a(n\2), a(n\4)*8), a(n\2))} \\ M. F. Hasler, May 10 2016
CROSSREFS
Cf. A122108, A147562, A164032, A245180 (gives a(n)/8, n>=2).
Cf. also A245542 (Partial sums), A245543, A083424, A245562, A246030, A254731 (an "even-rule" version).
Sequence in context: A227107 A205382 A109049 * A211017 A037018 A246310
KEYWORD
nonn,nice
AUTHOR
John W. Layman, May 05 2009
EXTENSIONS
Offset changed to 1 by Hrothgar, Jul 11 2014
Offset reverted to 0 by N. J. A. Sloane, Jan 19 2015
STATUS
approved