OFFSET
1,6
COMMENTS
The non-exponential divisors of n are those divisors of n that are not exponential divisors of n.
There are only a few duplicates > 1. For example a(32) = a(64) = 512, a(243) = a(729) = 19683, a(3125) = a(15625) = 1953125. Antti Karttunen, Jan 24 2025
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..25000
Eric Weisstein's World of Mathematics, e-Divisor
EXAMPLE
The divisors of 6 are 1, 2, 3, 6. The only exponential divisor of 6 is 6, hence a(6) = 1*2*3 = 6.
The divisors of 16 are 1, 2, 4, 8, 16. The exponential divisors of 16 are 2, 4, 16, hence a(16) = 1*8 = 8.
MATHEMATICA
f[p_, e_] := p^(DivisorSigma[1, e]/DivisorSigma[0, e]); a[n_] := Module[{fct = FactorInteger[n], e}, e = fct[[;; , 2]]; n^(Times @@ (e + 1)/2)/(Times @@ (f @@@ fct))^(Times @@ DivisorSigma[0, e])]; Array[a, 100] (* Amiram Eldar, Jan 25 2025 *)
PROG
(Magma) [1] cat [ &*[ d: d in Divisors(n) | exists(t) { p: p in P | v eq 0 or e mod v gt 0 where v is Valuation(d, p) where e is Valuation(n, p) } where P is PrimeDivisors(n) ]: n in [2..67] ]; // Klaus Brockhaus, May 26 2009
(PARI)
A007955(n) = if(issquare(n, &n), n^numdiv(n^2), n^(numdiv(n)/2));
A049419(n) = factorback(apply(numdiv, factor(n)[, 2]));
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, May 04 2009
EXTENSIONS
Edited by Klaus Brockhaus, May 26 2009
STATUS
approved