login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160196
Numerator of Hermite(n, 13/28).
1
1, 13, -223, -13091, 92065, 21723533, 101958529, -49768288739, -926761957183, 144025448042125, 5141947009489249, -497734445201769763, -28642623292540648607, 1968988727426096533261, 171559661755326400233665, -8575534533295174571498723, -1120252760054156502803433599
OFFSET
0,2
LINKS
FORMULA
From G. C. Greubel, Sep 25 2018: (Start)
a(n) = 14^n * Hermite(n, 13/28).
E.g.f.: exp(13*x - 196*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(13/14)^(n-2*k)/(k!*(n-2*k)!)). (End)
EXAMPLE
Numerators of 1, 13/14, -223/196, -13091/2744, 92065/38416, ...
MATHEMATICA
Table[14^n*HermiteH[n, 13/28], {n, 0, 30}] (* G. C. Greubel, Sep 25 2018 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 13/28)) \\ Charles R Greathouse IV, Jan 29 2016
(PARI) x='x+O('x^30); Vec(serlaplace(exp(13*x - 196*x^2))) \\ G. C. Greubel, Sep 25 2018
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(13/14)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Sep 25 2018
CROSSREFS
Cf. A001023 (denominators).
Sequence in context: A068120 A237602 A050523 * A218588 A158518 A223548
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved