login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160184
Numerator of Hermite(n, 1/28).
1
1, 1, -391, -1175, 458641, 2301041, -896635319, -6308683751, 2454058631585, 22238090874721, -8635680761357159, -95808996990263479, 37141246445981806129, 487826768288181211345, -188783965120435102822039, -2865977269485973590683399, 1107183737638672431002905921
OFFSET
0,3
LINKS
FORMULA
From G. C. Greubel, Sep 24 2018: (Start)
a(n) = 14^n * Hermite(n, 1/28).
E.g.f.: exp(x - 196*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(1/14)^(n-2*k)/(k!*(n-2*k)!)). (End)
EXAMPLE
Numerators of 1, 1/14, -391/196, -1175/2744, 458641/38416, ...
MATHEMATICA
Table[14^n*HermiteH[n, 1/28], {n, 0, 30}] (* G. C. Greubel, Sep 24 2018 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 1/28)) \\ Charles R Greathouse IV, Jan 29 2016
(PARI) x='x+O('x^30); Vec(serlaplace(exp(x - 196*x^2))) \\ G. C. Greubel, Sep 24 2018
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(1/14)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Sep 24 2018
CROSSREFS
Cf. A001023 (denominators).
Sequence in context: A318174 A158004 A264448 * A187724 A035883 A235188
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved